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Abstract 

Design and control of the bipedal humanoid robot locomotion are challenging areas of research. 

Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal 

locomotion. Bipedal walking can be achieved either with flat-foot or toe-foot walking. Flat-foot 

walking is more stable but slower, whereas toe-foot walking produces more natural and faster 

motion. Furthermore in toe-foot walking it is possible to perform stretch knee walking. The 

mechanical structure of the robot is designed with compact modular parts so that the robot 

kinematics can be modelled as a multi-point-mass system, and its dynamics are modelled 

applying the inverted pendulum model and the zero-moment-point concept. The optimality in the 

gait trajectory is achieved exploiting augmented model predictive control methods taking into 

consideration the trade-off between walking speed and stability. The robustness and stability of 

the walking gaits and posture in the presence of internal or external disturbances are enhanced by 

adopting angular compensation with joint control techniques. The thesis develops a flat-foot 

optimal walking gait generation method. The effectiveness of the control technique and the 

passive-toe design is validated by simulation tests with the robot walking on slope, stepping over 

an obstacle and climbing a stair. The walking gaits are implemented on a mid-size (1.6 meter, 58 

kg) bipedal robot. Experiments demonstrate the effectiveness of the new proposed Augmented 

Model Predictive Control (AMPC) method has improved and produced a smoother gaits tracking 

trajectory in comparison with existing LQR and preview methods; and at the same time the 

proposed algorithms are able to reduce noise interference.  
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My aspiration is that the bipedal humanoid robot will one day help to improve our elderly 

community in providing elderly-care service and living support. However, there is still much to 

be done to achieve this dream goal. Humanoid robot will evolve mechanically, electronically and 

be more intelligent progressively, and my research will not stop here, I will continue to develop 

and improve TPinokio capabilities, to realize my aspiration. 
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Chapter 1 

Introduction 

1.1 Background  

The development of bipedal robots began more than thirty years ago. A stable walking motion in 

a bipedal humanoid robot requires effective gait balancing and robust posture correction 

algorithms. Despite the several research efforts, it is still an extremely challenging task to 

develop and implement intelligent motion algorithms to control a bipedal robot, particularly with 

regards to adaptability, robustness and stability of the robot. This chapter presents the objectives, 

the scope of work and the methodologies under taken in this research. It will also give a brief 

summary of the research as well. 

 

1.2 Motivation and Objectives  

It is a challenging task to control and stabilize bipedal robot locomotion because of its 

constrained dynamic characteristics, especially with its walking gaits trajectories. The motivation 

and objectives of this research are:  

 To design and build a teen-size bipedal humanoid robot with simple kinematics structure, 

for education and research purpose. 

 To develop and implement an effective control algorithm to achieve a stable static and 

dynamic walking posture. 

The scope of this research includes the mechanical design, the electronics interface, the software 

development and the control algorithm implementation for both static and dynamic walking.  

 

For a robot to walk steadily and maintain good balancing and stability, the projected ground 

Center of Mass (GCoM) of the bipedal must stay inside the support convex polygon (SCP) of the 
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supporting stance foot during walking or stay within both feet SCP when the robot is supported 

by both leg. There are various approaches for stable walking found in literature. This research 

proposes an alternative approach that applies the Augmented Model Predictive Control (AMPC) 

algorithm and the Zero-Moment Point (ZMP) concept, together with the Inverted Pendulum 

Model (IPM) method to generate and synthesize the walking gait, and accompanied with 

stabilizer and sensory feedback to achieve a stable locomotion. External noise and disturbances 

are added into the simulation to test its robustness. As depicted in Figure 1.1, the proposed 

approaches are experimented with the TPinokio bipedal humanoid robot to test its effectiveness.  

 

 

Figure 1.1. TPinokio Bipedal humanoid robot and its simulation model.  

 

1.3 Robot and Coordinate Definitions 

The hypothesis on the bipedal robot, the walking gait and the impact conditions are as follows.  

The bipedal robot: 

 Has two symmetrical legs, connected to the hip and the end of each leg is terminated with 

forward facing foot. 
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 Comprises of rigid revolute joints connected by light weight links to form a kinematic 

chain. The rigid links are assumed to have zero mass and inertia. 

 The revolute joints are independently actuated. 

 

Walking gait: 

 Have a fully actuated Single-Support-Phase (SSP) and Double-Support-Phase (DSP). An 

extra Under-Actuated-Phase (UAP) is included if the robot has a passive toe-feet. 

 During the support phases, the support foot or feet remains still on the contact surface 

with no slippage. 

Impact conditions:  

 The impact force generated by the landing foot and the contact surface is instantaneous. 

 The velocity and momentum of the swing leg is zero immediately upon impact, no 

rebound and slippage.  

 The impact forces can be represented by impulses. 

 

The definition of the main coordinate system and the robot body parts used in the thesis is 

depicted in Figure 1.2.    

 

 

Figure 1.2. Definition of robot main axis coordinates and body parts. 
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1.4 Methodology 

In general, locomotion of a bipedal robot consists of motion planning and balancing control. 

Although humanoid robots have different designs, especially in their leg mechanism, there are 

still some common features found in the humanoid robot. Some general features include: At least 

six fully articulated and position controlled joints for each leg, there is an intelligent motion 

control algorithm and the robot’s feet have embedded sensors to measure the feet-surface contact 

points and contact forces. 

 

The approach taken in this research is to apply an Augmented Model Predictive Control (AMPC) 

algorithm with on-line feed forward to process future data to optimize a control signal. It is done 

by minimizing a cost function so that the robot’s Center of Mass (CoM) is able to track the 

reference Zero Moment Point (ZMP) as close as possible, and at the same time, this action is 

able to limit the motion jerk that will improve the stability of the robot’s walking. Furthermore, 

the walking gait of the robot is improved with on-line sensing of its environmental conditions 

with sensory feedback and fine tuning of its motion parameters.  

 

The bipedal robot is first linearized and modeled as a Linear Inverted Pendulum Model (LIPM). 

The transfer function is discretized and the system’s ‘jerk’ parameter is introduced into the 

equation as a control signal (∆U). The final system’s model is represented by a 3 × 3 state-space 

model. A reference trajectory, in this case, is the desire ZMP, is fed into the AMPC algorithm to 

produce a resultant CoM trajectory that will track the ZMP as close as possible. The following 

cost function is used in the optimization process to investigate the system’s performance:  

J = (𝑅𝑠 − 𝑌)
𝑇(𝑅𝑠 − 𝑌) + Δ𝑈

𝑇�̅�∆𝑈 . 

 

Other performance algorithms including walking with passive-toe, walking on slope, stairs 

climbing, step over an obstacle, are also evaluated and simulated with MATLAB in this research.  

 

A mid-size humanoid robot, TPinokio, with passive toe-feet has been designed and built for this 

research project. It is designed with light weight joint-link and with compact joint housing 
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mechanism. As a result, it has a simple kinematics structure and it can be modeled as a ‘single-

mass’ system. Without stabilization, the robot will not walk steadily and may fall and damaged. 

Thus, we need a feedback controller with build-in stabilization algorithms, and in turn it modifies 

the reference trajectory with the help of sensors information and eventually improves the overall 

system stability. The robot’s feet are fitted with force/torque sensors to measure the reaction 

forces magnitude and location; the measured values provide feedback signals to the controller to 

further improve the system stability. The illustration is as shown in Figure 1.3. An effective 

balancing controller and various control algorithms are also proposed and discussed in this 

thesis. 

 

 

 

Figure 1.3. Feedback and stabilizer control. 

 

1.5 Thesis Outline 

This report is organized in Chapters with the following contents: 

Chapter 1  
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This chapter will state the objectives, motiviations and a summary of the author’s research 

works.  

Chapter 2  

This chapter will provide a brief literature review of different robots’ design concept. It will also 

present literature review of bipedal humanoid robot research that is relevant and related to this 

research and lastly to outline and categorise bipedal walking into different groups and the 

research concepts of each group.  

 

Chapter 3  

This chapter will discuss the mechanism and design concept of the TPinokio bipedal robot. The 

robot waist and above upper body has more than 18 DoF, its legs and hip has 13 Degrees of 

Freedom (DoF). The design of the joint link is modular, compact and has zero backlashes. In 

addition, this chapter will also present the robot’s passive toe-feet design. This concept provides 

a better walking posture and is able to achieve a higher stairs climbing and obstacle clearance 

step.  

 

Chapter 4  

This chapter explain the kinematics and dynamics modelling of the TPinokio bipedal robot. The 

multi-point-mass kinematics and dynamics modelling methodology is first explained, then 

deriving the simplified 3D Inverted Pendulum Model (IPM) and other models used in the 

trajectories generation. This chapter also discusses the inverse kinematic algorithms and its 

implementation. 

 

Chapter 5  

Here, it will explain the control and walking pattern generation of the bipedal robot. Besides that, 

this chapter will also present the proposed motion control algorithms and description of the 

walking gait generation methods and explain the simulation tools used in the design. Applying 

the Augmented Model Predictive Control (AMPC) technique to control the bipedal robot is 

motivated by its capability in handling constraints. This method is effective for walking gait 

pattern synthesis and controlling of  bipedal robot locomotion, which is subjected to disturbances 

or constraints in an unstructured environment. 
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Chapter 6  

Bipedal locomotion control consists of a gait pattern generation block and a stabilization 

controller block. Without stabilization control, the bipedal cannot walk firmly. In this chapter, 

the stabilization concept which works along a given walking pattern and the posture control 

technique will be presented to realize a stable biped walking. 

 

Chapter 7  

A smmary of the results finding and a conclusion is made in this chapter. This chapter also 

provides suggestions for future works. 

 

Appendices:  

It contains some supplementary technical information, and also a list of all MATLAB TPinokio 

bipedal Toolbox that was developed during the course of this research. 

 

1.6 Research Contributions 

This thesis documents the author’s progress and achievements made in the research works done 

on the humanoid bipedal robot TPinokio in last three year’s.  

During the first year, the author focused on the robot mechanical and actuating mechanism, 

including the design, fabrication and testing of the mechanical structure. The objective is to 

construct a robot with a simple kinematics structure, so that it can be modeled as a simplified 

‘point-mass’ system. After the mechanical problems are solved, the 2
nd

 and 3
rd

 year duration 

concentrated on the motion gaits, trajectories generation and balancing control. The ultimate goal 

is to explore and implement a set of suitable stability and control algorithms, which will produce 

a stable gait for a bipedal robot to walk steadily on different terrains like a flat ground, slope and 

step up stairs. A new approach is proposed and simulations have been done using the 

combination of Augmented Model Predictive Control (AMPC) method and the Inverted 

Pendulum Model (IPM) concept, to solve the Center-of-Mass (CoM) and Zero-Moment-Point 

(ZMP) tracking issues.  
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The Research Contributions in this research are 

 A new method using AMPC/IPM/ZMP concepts with optimized gait control algorithm 

has been proposed and validated. 

 A unique compact modular-joint, with simple kinematic structure, mid-size humanoid 

robot has been designed and built.  

 

1.7 Publications 

Some of the research presented in this thesis has appeared in the following publications. 

[1] T. C. Wee, A. Astolfi, M. Xie, Modular Joint Design of a TPINOKIO Bipedal Robot, 8
th

 

International Conference on Informatics in Control, Automation and Robotics, ICINCO 

2011. pp.185-190. 

[2] T.C. Wee, A. Astolfi, M. Xie, Modular-Joint Design for Efficient Walking and Modeling 

of a Bipedal Robot TPinokio, 14
th

 International Conference on Climbing and Walking 

Robots, CLAWAR 2011. pp.493-500. 

[3]  T. C. Wee, A. Astolfi, M. Xie , Control of Bipedal Robot (TPinokio) with Augmented 

Model Predictive Control and Inverted Pendulum Method, 2
nd

 International Conference on 

Electronics, Communications and Control, ICECC 2012, pp.2781-2784. 

[4]  T.C. Wee, A. Astolfi, M. Xie, Robust Control of Bipedal Humanoid (TPinokio), Journal 

Procedia Engineering Vol. 41, Elsevier 2012, pp. 643-649. 

[5]  T.C. Wee, A. Astolfi, M. Xie, Design and Control of a Bipedal Robot with Sensory 

feedback, International Journal of Advanced Robotic Systems, 2013, pp.1-12. 

[6] T.C. Wee, Mechanical design and optimal control of humanoid robot (TPinokio), The 

Journal of Engineering, IET 2014, pp. 1-12.  
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Chapter 2 

Literature Review and Background Theory 

 

This chapter presents the development history and also discuss on the literature review of bipedal 

humanoid robot research that is relevant and related to this research works. The literature review 

sections also outlined and categorized bipedal walking into different groups and the design 

concept for each group. 

 

2.1 General Information  

In designing the control of the ‘walking’ of a stable bipedal humanoid, one has to take into 

consideration of its complexity and at the same time, not to overlook the primary need to ensure 

that the biped is at all times maintain its balance while walking on unstructured environment. It 

is therefore a challenging task indeed.  

Many studies and works were done from the 70s. Some of them are mentioned below, 

Vukobratovic [M. Vukobratovic et al., 1973] was one of the pioneers in studying bipedal 

locomotion, and Miyazaki [F. Miyazaki, S. Arimoto et al., 1980] proposed reduced-order 

equations of motion model for dynamic walking. Miura [H. Miura, I. Shimoyama et al., 1984] 

developed the inverted pendulum model concept and applied it on bipedal walking, and the 

stability analysis conducted had shown that dynamically stable walking mode can be achieved. 

Mita [T. Mita, T. Yamaguchi et al.,1984] applied modern optimal regulator control theory on 

plane dynamic biped locomotion. Raibert [M. Raibert , 1986] implemented different landing 

control algorithms on a one-leg hopping robot with rhythmical high speed walk. Furusho [J. 

Furusho, A. Sano et al., 1990] started experiments on 3D bipedal robot with force/torque sensor-

based feedback control. Li [Q. Li, A. Takanishi et al., 1991] applied the “zero-moment-point“ 

concept to control the motion of the body in a full 12 DoF bipedal robot (the WL-12RIII). Kajita 
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[S. Kajita, T. Yamaura et al., 1992] proposed an interesting concept of potential energy 

conserving orbit to formulate new control laws to experiment on their bipedal with an average 

speed of 0.2m/s. Miller [W.T. Miller, 1994] and Grishin [A. Grishin, A. Formal et al., 1994] 

applied modern control theory, real-time neural network and adaptive control algorithm to 

produce stable dynamic walking. The study of bipedal walking on rugged environment began in 

the early 90s. Zheng [Y. Zheng , J. Shen et al., 1990] studied on walking characteristic on slope 

surface, and Yamaguchi [J. Yamaguchi, A. Takanishi, et al., 1995] designed a bipedal robot with 

shock absorber to walk on rough terrains. Since the late 90s, various control strategies and 

synthesizing methods to generate bipedal walking trajectories were initiated. These strategies 

will consist of taking data and records on the human walking characteristics, defining the finites 

states machine and not forgetting having feedback sensory systems. Besides that, we will have 

strategies that give passive gaits generation with gravity inertia and optimal gait trajectories with 

modern control laws. They have enriched the bipedal research community and grow by leaps and 

bounds. 

 

2.2 Bipedal Development History by Various Research Institutions  

Many automatic structures were built to mimic human movements in the early 18th century. 

Leonardo de Vinci was one of the first people to create the automatic structures in form of a 

humanoid as shown in Figure 2.1a. In the early 20th century, the Westinghouse Society built the 

first electrical structure and coined is as “Elektro humanoid”, as shown in Figure 2.1b. 

 

Figure 2.1. Pictures of 19
th

 century robots. 
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It was in the 1970s that human-like bipedal robots started to appear. The University of 

Lomonosov in Moscow built a legged robot OstRover as shown in Figure 2.2a. In the USA, the 

MIT built a jumping robot ‘Spring Flamingo’ was one of the pioneers to walk and run with a 

dynamically stable gait as shown in Figure 2.2b. In the 20th century, Japan Waseda University 

carried out studies on bipedal robotic walking. As depicted in Figure 2.3, subsequently, the team 

in the University developed a series of bipedal humanoid robots, namely the Wabot-1, WL-10 

and WABIAN-2R  

 

Figure 2.2. The 1960/70 robots. 

 

 

Figure 2.3. Waseda university WL series robots. 
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In the 1980s, Japanese researcher developed the bipedal robot BIPER, as depicted in Figure 2.4a. 

This robot BIPER, can perform dynamic walking and had passive articulation at the ankles with 

a large feet to maintenance balance. In 1990, Kajita and Tani constructed the MELTRAN-II 

robot with the concept of an inverted pendulum motion, as shown in Figure 2.4b. 

 

Figure 2.4. Robots designed and built by Japanese researchers. 

 

2.3 Recent Developments on Bipedal Robots 

More recent humanoids will exhibit emotions and are able to ‘learn while they walk’ as they 

learn through autonomous interaction with the environment. Bipedal humanoid robotics offers an 

alternative research tool in studying the human behavior and cognitive science. The largest 

concentration of research activity of service robots are presently in Japan and Korea. Japan’s 

Mitsubishi Research Institute predicts that the future industry for humanoid service robots is 

forecasted to worth around USD 50 billion by 2020, and each household would own at least one 

service robot by 2020.  

 

2.3.1 Japan  

In Japan the development of bipedal and humanoid robots started very early. They were 

spearheaded by the industrial companies.  The Humanoid Robotics Project (HRP) was supported 

by the Japan Ministry of Economics, Commerce and Industry (METI). Honda had built a series 
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of bipedal robots since the 90s. Honda began to design  P1 to P3 and then later on progress to the 

design of the ASIMO. The ASIMO robot is 1.4 meter high and has more than 25 DoF, as 

depicted in Figure 2.5a. The Toyota humanoid robot, as shown in Figure 2.5c is capable of 

playing musical instrument and the SONY Qrio robot, as shown in Figure 2.5d is the first kid-

size bipedal robot built in 2003.    

 

Figure 2.5. Japan Robots. 

 

The HRP series robots, as depicted in Figure 2.6, were developed by Kawada Industries and the 

AIST institute. The HRP-2 robot has more than 30 DoF, is approximately 1.52m high, and 

weighs around 58 kg. It can achieve a walking speed of around 2.5 km/h, and comes with in-built 

vision cameras, force sensors with attitude sensors. With such a design, the robot was able to 

control its own stability, whilst it controls its tasks. The latest version of the series is HRP-4. 

 

Figure 2.6. HRP series robots.  
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2.3.2 Korea  

In Korea, as depicted in Figure 2.7, bipedal robots KHR-series have been developed in Korea by 

Korea Advanced Institute of Science and Technology (KAIST) since 2000. The KHR-1 was 

designed with no hands and head and consists of 21 DoF.  KHR-2 is a 41 DoF humanoid which 

could walk with human-like movement. The latest development of HUBO in 2010 is more 

refine, with its movements more graceful like human and also come with more human-like 

features. 

 

 

Figure 2.7. KHR series robots. 

2.3.3 France  

Strasbourg University LSIT laboratory in France carried out the initial studies on legged robots. 

Their bipedal robot had six joints with only legs and feet. As depicted in Figure 2.8(a), the 

University of Versailles LIRIS lab built a biped ROBIAN for test bedding. The BIP2000 robot, 

is a joint R&D works from INRIA Rhone-Alpes and LMS Poitiers, as depicted in Figure 2.8(b), 

it is approximately 1.82m tall and weighs around 100kg. The Rabbit robot, with point feet, as 

shown in Figure 2.8(c), was built in 1998 in collaboration with the University of Michigan 

(USA) to study planar dynamics motion. The Nao robot, as depicted in Figure 2.8(d), was built 

in 2006 by the company Aldebaran, is a 58-cm tall humanoid robot and is successfully used in 

computer and science classes for education. The France-Japanese Joint Robotics Laboratory 

(JRL) was formed recently to enable the French robotics researchers to enhance their researches 

on legged robot.  

http://en.wikipedia.org/wiki/KAIST
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Figure 2.8. Robots designed by France researchers. 

 

2.3.4 Other European Countries               

In Europe, as shown in  Figure 2.9, humanoid robots built by researchers and universities include 

Johnnie/LOLA from University of Munich Germany, which is powered by linear actuators, and 

LUCY by Vrije Universiteit Brussel, using pneumatic muscle, and  a two-year old child like 

humanoid robot called iCub from University of Genova Italy. The iCub, as depicted in Figure 

2.9(c) was developed as part of the EU project RobotCub and subsequently adopted by more 

than 20 laboratories worldwide. 

 

Figure 2.9. Robots from various European universities. 

 

2.3.5 USA              

In the USA, as shown  in Figure 2.10, among the numerous humanoid robots that were 

developed in the different varsities,  researchers at NASA have developed a robonaut robot 
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‘Valkyrie’, measuring in at around 1.9m and around 125kg, the robot is capable of manipulating 

objects in space. Organized by the United States military’s Defense Agency, The DARPA 

Robotics Competition 2014 [http://www.darpa.mil/default.aspx] was the center of attraction. 

This project is centered on the development of autonomous humanoid robots to explore disaster 

areas and to deploy in search and rescue missions. 

 

Figure 2.10. Robots designed by USA researchers. 

 

2.3.6 Singapore  

In Singapore, as shown in Figure 2.11, the design of bipedal robots was carried out at the 

National University of Singapore, at the Nanyang Technologies University and at the Temasek 

Polytechnic since 2007.  

 

Figure 2.11. Robots designed by Singapore institutions 
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2.4 Robot Mechanical Design 

There are many criteria to consider when developing a bipedal robot. For instance, we need to 

consider the mechanical structure, the actuator type, the weight to power ratio, the sensors types, 

the dynamics, the kinematics and, inevitably, the cost. The three most current types of joint 

mechanism are the electric revolute joint, the linear actuator joint and the artificial muscle joint.  

 

2.4.1 Electric Revolute Joint 

Electrical motors with Harmonic Gear (HG) drives are commonly used in many revolute-joint 

designs. The advantage of such gear is that it is compact, has zero-backlash and high torque 

ratio. Most of the fully 3D articulated bipedal robots such as HUBO, HRP and LOCH have 

electric revolute-joints, as depicted in Figure 2.12. 

 

 

Figure 2.12. LOCH (NTU) robot with electric revolute-joint design concept.  

 

2.4.2 Linear Actuator Joint 

Robot LOLA [L. Sebastian, B. Thomas et al., 2009] as depicted in Figure 2.13, is a 3D biped and 

each leg has six DoF. It is designed with ball-screw based linear actuator joints concept. The 

limitation with such design is that the ball-screw mechanism is coupled to the ankle joint in a 

parallel configuration. As such, the mechanism is much more complex and difficult to control 

than the HG revolute-joints.  
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Figure 2.13. LOLA robot with Linear actuator design concept. 

 

2.4.3 Artificial Muscle Joint 

Robot LUCY [B. Vanderborght, B. Verrelst et al., 2005], as depicted in Figure 2.14, is a seven 

link planar (sagittal plane) walking robot. Its mechanical structure employs the Pleated 

Pneumatic Artificial Muscles (PPAM) drive. As the artificial muscles are pneumatically driven, 

there is only a ‘pull’ action. The robot will need a bi-directional joint. To create a working ‘bi-

directional’ revolute joint movement, two muscles must be coupled antagonistically to create the 

motion. It is to note that the kinematics model and torque characteristic are different from the 

electric revolute joint design.     

 

 

Figure 2.14. LUCY Artificial muscle design concept. 
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2.5  Robot Configurations 

2.5.1 Coordinate 

Most of the current bipedal humanoid robots are designed to have fewer Degrees of Freedom 

(DoF) than human being. This is because the current robotics technology is unable to reproduce 

the complex of the human skeletal structure. The number of DoF for each joint is limited to 

operational requirement and thus the mobility of a bipedal robot is designed to provide only the 

essential or critical movement. Refer to Figure 2.15, in the robot; the design of its structure will 

be referenced by three coordinate planes, namely, the x-sagittal plane, the y-frontal plane and the 

z-transversal plane. The right hand XYZ Cartesian coordinate is adopted.  

  

Figure 2.15. The robot planes of section and Cartesian coordinate. 
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2.5.2 Foot Movement  

A robot walking gait is represented by eight sequences [M. Xie, Z.W. Zhong et al., 2009] and 

divided into two phases in a loop cycle as illustrated in Figure 2.16, with the following 

definition:  

 Stance   : the duration when both feet is in contact with the surface. 

 Swing   : the duration when one of the feet is lifted from the surface. 

 Single support : the moment when only one leg is supporting the robot. 

 Double support : the moment when both legs are supporting the robot. 

 Heel-strike  : the moment when the heel of the swing foot contact the surface. 

 Toe-off  : the moment when the foot swings off the contact surface. 

 

Figure 2.16. A typical robot walking cycle. 

 

2.6 Forward and Inverse Kinematics Model  

Kinematics, in robotic mechanism, describes the motion of a body without considering the 

force/torque acting on its body or causes the motion. Forward kinematics is a process of mapping 

a robot manipulator from Joint-space to Cartesian-space (sometimes known as task space). For 

instance, if the coordinates of a manipulator is defined in vector form, the joint angles is 𝜃 ∈

 ℛ𝑛, and the orientation/position of the manipulator’s end effector is  𝑥 ∈  ℛ𝑚, the forward 

kinematic function can be expressed as 𝑥 = 𝑓(𝜃). Similarly, the inverse relationship is 𝜃 =



 

 34 

𝑓−1(𝑥).  Note that in a redundant manipulator (n > m), the solution will be non-unique, and even 

with n = m, multiple solutions may exist [R. N. Jazar, 2010].  

 

2.6.1 Forward Kinematics  

A bipedal robot resemble a serial-chain mechanism, the forward kinematics of the joint link can 

be determined by transforming the kinematic information of the robot’s Joint-space to the 

Cartesian-space. In general, the coordinate of a robot end-effector transformation matrix with 

respect to the base frame can be determined by the Denavit-Hartenberg (D-H) method [R.N. 

Jazar, 2010]. 

 

2.6.1.1 Denavit-Hartenberg (D-H) transformation 

This method is to transform between two adjacent coordinate frames. Applying  the D-H 

convention, the coordinate frames Bi  is transformed to the coordinate frames to 𝐵𝑖−1 by the 

homogenous transformation matrix 𝑇𝑖
𝑖−1  : 

 

𝑇𝑖 = [
𝑅𝑖

𝑖−1 𝑑𝑖
𝑖−1

0 1
] = [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑐𝑜𝑠𝜃𝑖
−𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑠𝑖𝑛𝜃𝑖

0            𝑠𝑖𝑛𝛼𝑖
0            0

𝑐𝑜𝑠𝛼𝑖              𝑑𝑖
0              1

]𝑖−1  ,           (2.1) 

where 𝑅𝑖
𝑖−1    is a 3 × 3 matrix representing rotation and 𝑑𝑖

𝑖−1  is a  3 × 1 vector representing 

translation. Similarly, the inverse transformation equation to transform the coordinate frame 

𝐵𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to coordinate frame 𝐵𝑖−1(𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1)  is  

[

𝑥𝑖−1
𝑦𝑖−1
𝑧𝑖−1
1

] = 𝑇𝑖 [

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

]𝑖−1   . 

The forward position kinematics of a joint coordinate with reference to the base frame can be 

solved from the combined transformation matrix  

𝑇𝑛
0 = 𝑇1

0 (𝑞1) 𝑇2
1 (𝑞2) 𝑇3

2 (𝑞3)…… . 𝑇𝑛
𝑛−1 (𝑞𝑛) .                                  (2.2) 

Please refer to Appendix B for details. 
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2.6.2 Inverse Kinematics 

In bipedal robotics research, solving for inverse kinematics is one of the challenging areas 

because of it high complexity and degrees of freedom (DoF). There are three primary methods to 

solve for inverse kinematics, namely, the conventional algebraic, geometric and iterative 

methods. Each method has its own limitations and advantages. Both the geometric method and 

algebraic method give a definite set of solutions. The iterative method provides generalized 

numerical solutions and converges to one solution space. All three methods are able to provide 

real-time computation solutions of inverse kinematics. 

 

2.6.2.1 Closed-Form Solutions 

Solutions that are closed-form takes a shorter time to derive when compared with when finding 

for numerical solutions. However, in the case for closed-form solution, they are robot dependent. 

Generally, the closed-form solutions can be derived in a 6-DOF system with special kinematic 

geometric features [B. Siciliano, O. Khatib, 2008]. In general, algebraic and geometric methods 

will result in closed-form solution. 

 

2.6.2.1.1 Algebraic Methods 

Algebraic method is to identify significant equations that contain the joint variables and then 

these equations will be manipulated to a soluble form. After which, reducing to a single variable 

equation is often the way to solve such problems [B. Siciliano, O. Khatib, 2008]. 

 

2.6.2.1.2 Geometric Methods 

A closed-form solution may also be derived using the geometry of the bipedal robot with known 

geometry. The constraint is that the closed-form solution can be applied only to a specific 

geometry. [D. Goswami, P. Vadakkepat et al., 2009 ], [T. Nguyen, W.K. Dae et al., 2008] used 

this method to derive the solution for a 13 DoF humanoid robot. 

 

2.6.2.2   Numerical Methods 

A polynomial equation with degree four or less will be able to produce a closed-form solution. 

Thus any higher degree polynomial will use numerical methods to obtain solutions. The added 
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advantage is that this method can be used in any kinematic structure as it is not robot dependent. 

Symbolic elimination methods and iterative methods are commonly used besides the 

continuation method under the classification for Numerical Methods 

 

2.6.2.2.1 Symbolic Elimination Methods 

Symbolic elimination method is to eliminate and reduce the system’s nonlinear equations 

variables to a set of manageable equations by using analytical manipulations. Raghavan [M. 

Raghavan, B. Roth, 1990] applied dialytic elimination to determine the inverse kinematics 

equation of a 6 DoF manipulator. Manocha [D. Manocha, J. Canny, 1992] further improved this 

technique to a generalized eigenvalue problem.  

 

2.6.2.2.2 Continuation Methods 

These techniques are applied to inverse kinematics problems by exploiting the intrinsic 

properties of polynomial systems to derive the possible solutions [L.W. Tsai, A.P. Morgan, 

1985]. These methods will basically track the solution path of the system. Tracking will start 

from a system with known solutions, to solve for the desired target system recursively. Solutions 

will be obtained when the original system is progressively translated to the target system. [C.W. 

Wampler, A.P. Morgan et al., 1990].  

 

2.6.2.2.3 Iterative Methods 

Different types of approaches with iterative methods can also solve the inverse kinematics 

problem. Often, these approaches are able to converge to one solution that is based on a good 

initial guess, the time taken to converge depend on the ‘quality’ of that initial guess. Pieper [D. 

Pieper, 1968] was among the pioneers to apply the Newton–Raphson iterative method. Other 

methods include using ‘resolved motion rate control’ method, ‘modified predictor–corrector 

algorithm’ method and using ‘interval analysis’ method that allows convergence to a solution [B. 

Siciliano, O. Khatib, 2008]. The derivation of the Jacobian is needed in some minimization 

algorithms, and the pseudo-inverse for inverting a non-square and singular Jacobian. The inverse 

kinematics can be seen as identifying and solving for 𝑞𝑘 from a set of nonlinear matrices 

𝑇0 𝑛 = 𝑻(𝑞) = 𝑇0 1(𝑞1) 𝑇  
1
2(𝑞2) 𝑇   

2
3(𝑞3)… 𝑇𝑛−1

𝑛(𝑞𝑛)…. 
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(2.3) 

or                                   𝑟𝑖𝑗 = 𝑟𝑖𝑗(𝑞𝑘)            𝑘 = 1,2, … . 𝑛 . 

 

where n denote the DoF.  

Equation (2.3) is the Newton-Raphson method used to determine the joints’ variables (qk). 

 

The kinematic equations is solved by applying the iterative technique, by setting 

𝑻(𝑞) = 0  ,                                                       (2.4) 

and start with an  initial guess for the joints’ variables q, 

𝒒∗ = 𝒒 + 𝛿𝒒 .                                                     (2.5) 

The configuration of the end-effector frame can be obtained from the joint variables equation 

𝑻∗ = 𝑻(𝒒∗) .                                                          (2.6) 

The error between the desired configurations and the calculated values using the forward 

kinematics, which is called ‘residue’ must be minimized: 

𝛿𝑻 = 𝑻 − 𝑻∗  .                                                        (2.7) 

 

The Jacobian matrix of the set of equations is 

𝑱(𝒒) = [
𝜕𝑇𝑖

𝜕𝑞𝑗
]  .                                                         (2.8) 

Please refer to Appendix C for a details description of inverse kinematics iteration algorithm and 

technique.  

 

2.7 Dynamic Model  

Dynamic equations of motion describe the relationships between the actuation and contact forces 

exerting on the motion of a rigid mechanism object, with the acceleration and motion trajectories 

that are due to the reacting forces. 
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2.7.1 Lagrange Method 

Bipedal robots are walking mechanism with rigid legs. Torque commands to the joint are 

required to allow each joint motion to follow a desired trajectory. The desired torque/motion can 

be derived by using the Lagrange equations of motion [Reza N. Jazar, 2010],[E.R. Westervelt, 

J.W. Grizzle et al., 2007]. The equation is written as  

𝑴(𝒒)�̈� + 𝑽(𝒒, �̇�)�̇� + 𝑮(𝒒) = 𝑩𝑼 .                                     (2.9) 

 

Where q is the joints angle, the matrix M is the inertia matrix, V is the velocity coupling matrix 

(Coriolis, centrifugal forces etc), G is the gravity matrix, B is the joints’ torque / forces mapping 

matrix, and finally U is the applied torques.  

 

A robot mechanical system is fully-actuated when the numbers of independent actuators is the 

same as the numbers of DoF, and if the numbers of actuators are fewer than the DoF, then it is 

said to be under-actuated.  

 

2.7.1.1 Fully-actuated Phase  

The dynamics model of a bipedal robot during the fully-actuated phase resemble a N DoF rigid-

link mechanism actuated at the support foot ankle [E.R. Westervelt, J.W. Grizzle et al., 2007], 

and without slipping and is motionless during this phase. The stance foot acts as an actuated 

pivot. Let qa = [q1,q2 · · · ; qN]
T
 denote the joints’ variables, where qN is the support foot ankle 

joint angle, and  q1, q2. . . , qN-1 denote the angles of all other joints. The fully actuated dynamic 

equation is 

 

𝑴𝒂(𝒒𝒂)𝒒�̈� + 𝑽𝒂(𝒒𝒂, 𝒒�̇�)𝒒�̇� + 𝑮𝒂(𝒒𝒂) = 𝑩𝒂𝟏𝑼𝒃 + 𝐵𝑎2𝑢𝐴  ,                   (2.10) 

 

where uA = uN is the ankle joint input and Ub = [u1,u2….,uN-1]
T
 is the forces/torques exerted at all 

the other remaining joints. 
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2.7.1.2 Under-actuated Phase 

During under-actuated phase, the stance heel of the swig leg left the contact surface and the 

whole robot begins to roll over at the stance feet toe, and the stance toe act like an un-actuated 

pivot with no actuation between the ground and the stance feet toe, the dynamics of the robot in 

this phase is equivalent to an N+1 DoF robot with un-actuated point feet. The dynamic equation 

cnabe determined by applying Lagrange method, this yields 

 

𝑴𝒖(𝒒𝒖)𝒒�̈� + 𝑽𝒖(𝒒𝒖, 𝒒�̇�)𝒒�̇� + 𝑮𝒖(𝒒𝒖) = 𝑩𝒖𝑼𝒖 ,                                 (2.11) 

 

where qu=[q1,q2,…,qN+1]
T
 are the joint angles, and Uu=[u1,u2,…,uN , 0]

T
 is the forces/torques 

exerted at all the joints exclude the stance toe. 

 

2.7.1.3 Double-Support (impact) Phase 

The dynamic model of the instantaneous impact forces and reaction torques exerting at the foot 

ankle when the swing foot first touches the contact surface during the DSP/impact phase can be 

written as  

𝑴𝒅(𝒒𝒅)𝒒�̈� + 𝑽𝒅(𝒒𝒅, 𝒒�̇�)𝒒�̇� + 𝑮𝒅(𝒒𝒅) = 𝑩𝒅𝑼𝒅 + 𝝉𝒆𝒙𝒕 ,                      (2.12) 

 

where τext represents the vector of external torques acting on the robot.  

 

Applying inverse kinematics, the joints angle (q) for the desired geometric path of the end-

effectors (Pelvis, Left-foot, right-foot) of the robot can be determined. And the joint’s motor 

torque command can be derived by substituting the joints angle (q) into Equations (2.10), (2.11), 

(2.12).  

 

2.7.2 3D Linear Inverted Pendulum Dynamic model  

The human walk resembles a compass gait, as depicted in Figure 2.17. The 3D Liner Inverted 

Pendulum Model (3D-LIPM) which applied the compass gait technique has led to the 

development of simplified IPM walking model stated below:  
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 Human walk resembles a ‘compass gait’ where the CoM vaults over rigid legs. 

 Most biological structures seem to prefer a walking pattern that has the characteristic of 

two peaks of the vertical ground reaction force which reassemble a compass gait.  

This method was first studied by McGeer [McGeer, 1990] to explain the characteristics and the 

dynamics of walking. The 3D-LIPM, which is a derivation of the Inverted Pendulum Model, was 

proposed by Kajita [S. Kajita, K. Tani et al., 1995], and by applying the preview control 

algorithm, they were able to generate on-line stable walking, turning, jumping, and even running 

gait for bipedal robot. More details of the application of the 3DLIPM will be discussed in 

Chapter 5.   

 

Figure 2.17. 3D Inverted pendulum model and compass-gait motion. 

 

2.8  Center of Mass (CoM), Zero Moment Point (ZMP) and 

Support Convex Polygon (SCP) 

The Centre of Mass (CoM) is the global position of the total weight of a rigid body as depicted in 

Figure 2.18. The CoM coordinate points (𝑥𝑐𝑜𝑚, 𝑦𝑐𝑜𝑚, 𝑧𝑐𝑜𝑚 ) can be calculated by the following 

equations  

𝑥𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

            ,          𝑦𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑦𝑖
𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

          ,    𝑧𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑧𝑖
𝑛
𝑖

∑ 𝑚𝑖
𝑛
𝑖

   .             (2.13) 
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Where 𝑚𝑖 denote the mass of the particles, 𝑝𝑖 denote the coordinate point and  𝑛 is the number of 

mass particles. 

 

Figure 2.18. Location of the robot CoM and ZMP. 

 

Refer to above Figure 2.18. A popular concept using the Zero-Moment-Point (ZMP) and CoM 

trajectory tracking method has been developed to achieve stable walking. The ZMP [M. 

Vukobratovic, B. Borovac, 2004] can be defined as a rotating point at the ground contact surface 

which the sums of all the moments exerting on this point are equal to zero. The ZMP variables 

[W. Pengfei, H. Bo et al., 2005] can be expressed as  

(2.14) 
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The ZMP (𝑥𝑧𝑚𝑝, 𝑦𝑧𝑚𝑝 ,0)  is related to the ground projection [D. Goswami, P. Vadakkepat et al., 

2009] of the CoM by the equations  

(2.15) 

 

Where mi is the mass of the particles, 𝑀𝑖𝑥 and 𝑀𝑖𝑦, are the moments of the links about the 

sagittal-axis and the frontal-axis respectively.  

The stable region, also known as the Support Convex Polygon (SCP) as illustrated in Figure 

2.19, is the convex polygon of the contact area between the contact surface and the support leg 

foot-print. In Single Support Phase (SPP), the support polygon is the shape of the stance foot, 

whereas during the Double Support Phase (DSP) the support polygon is the convex area of both 

feet and the tangents lines.  

 

Figure 2.19. Area of  the SCP is the convex area of the red envelop.  

 

As illustrated in Figure 2.20, in order to maintain dynamic equilibrium, the ZMP must be inside 

the support convex polygon (SCP).  
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Figure 2.20. A typical bipedal robot support polygon stable region.  

 

2.9 Walking Gait and Path Planning  

A walking gait consists of three basic phases: the double support phases (DSP), the single 

support phases (SSP), and the impact phase (IMP). For a bipedal robot designed with toe-feet, 

the ‘rotational phase’ is also taken into consideration. A typical walking gait is illustrated in 

Figure 2.21.  Planning for humanoid robot walking gait includes defining a trajectory curve for 

the swing feet and the Center of Mass (CoM), it rotational motion, and it orientations. The 

Cartesian path of the feet movement is expressed in time function to determine its velocity and 

acceleration [M. Xie, Z.W. Zhong et al., 2009]. As shown in Figure 2.20(a), the basic parameters 

are pelvis height (Z), frontal-shift (F), step-length (S) and foot lifting-height (H). A basic forward 

walking sequence assuming right feet swing first is as follows: 

 At the beginning of the walking step the robot CoM shift to the left, so that the Zero 

Moment Point (ZMP) is inside the left foot SCP, now the robot is in the SSP; 

  The right foot leaves the ground and the right leg begin to swing forward with predefined 

trajectory;  

 During the ending of the swinging, once the right foot contact the ground,  the robot is 

supported by two legs and it is now in the DSP; 

 During the DSP, the robot CoM shifts from the left to that of the right foot support. The 

ZMP is now inside the support convex polygon of the right foot-print; and 



 

 44 

  The right leg is now the stance leg, and the left feet lifts up and swings forward to 

execute the next step. 

 

Figure 2.21. A typical biped walking pattern and its CoM path trajectory. 

 

The desired trajectory of the swinging feet and that of the CoM is as depicted in above Figure 

2.21(b). By applying the inverse kinematics, the required angular trajectory of each articular joint 

can be obtained. A fast walking motion requires dynamic balance while a slow walking motion 

may walk statically. A fast walking action also requires more robustness in the controller as 

disturbances will have a greater effect on the system dynamics and simultaneously there is less 

reaction time to correct for the disturbances. 

 

2.9.1 Static Gait 

In static walking gait, as depicted in Figure 2.22(a), the robot Center of Mass (CoM) is always 

remain in the Support Convex Polygon (SCP) when the robot moves its swing leg, and this 

usually applies to slow walking motion. Static walking motion has better stability because the 

CoM is always stays inside the feet/foot SCP, and the structure inertial momentum does not 

cause too much disturbance during walking. The location of the ZMP is very close or at the same 

point to the CoM’s ground projection point.   
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2.9.2 Dynamic Gait 

In the dynamic walking gait, as depicted in Figure 2.22(b), the ground projection CoM point may 

not necessary always be located within the foot support polygon. When the walking becomes 

faster, the CoM will be located near to the boundary of the SCP. As such, the biped requires a 

faster legs motion speed to recover from an unstable state. Although such motion gait is 

smoother and it resembles a more human-like walking gait, due to the inertial and momentum 

effect, it may produce jerky motion and gives rise to stability problems. This is a challenge for 

bipedal robotic researchers. 

 

Figure 2.22.  Trajectory of robot locomotion, the red dotted line is the CoM trajectory. 

 

2.10 Trajectory Generation and Control  

There are three main methods that can be used to compute the desire trajectories: capturing 

human motion, rhythmic based and purely computer generated. 

 

2.10.1 Human Gait Motion Capture and Playback  

A typical motion capture method [http://www.frontiernet.net/~imaging/gait_model.html/] is as 

shown in Figure 2.23, the Honda humanoid robot P2 and P3 uses this technique. The walking 

motion is achieved by playing back the trajectories recorded from human walking on different 

terrains. These trajectories are then modified to suit the individual robot characteristics. Although 

this method is able to achieve a stable walking gait but often yields unnatural motions [Q. Yuan, 
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I.M. Chen, 2013]. This is due to the discrepancy in gait mapping between a human walking and a 

robot walking. Furthermore, such reverse-engineering technique is not portable and is 

computational intensive. 

 

Figure 2.23. Human walking gait data recording technique. 

 

2.10.3 Biologically Inspired Rhythmic Manipulation 

Recently, rhythmic based walking control capable of generating periodic motions such as the 

Central Pattern Generators (CPG) is gaining attention. A typical approach with the CPG is the 

composition of coupled nonlinear equations to achieve a stable limit cycle walking pattern that 

generate trajectory signals. The CPG can generate effective walking gaits pattern by adjusting 

the walking cycle rhythm from sensory feedback information and mimicking virtual neurons to 

generate signals to learn to improve on the walking gaits (hypothesis that how babies first learn 

to walk). Based on the results of the many studies on humans walking do exhibit some form of 

CPG-like structure, CPG are suitable for bipedal locomotion because it has the ability to generate 

rhythmic gaits patterns. [A. Herali, K. Wolff et al., 2007], [M.A. Carla, J.A. Tenreiro Machado et 

al., 2010], [A.G.Baydin, 2012]. 

 

2.10.4 Computer Generated Trajectory   

A typical model-based control algorithm is depended on the mathematical model of the bipedal 

robot. Computer based control techniques are popular due to it intelligent and high speed 

algorithms solving capabilities. The most common control strategy is to track and confine the 

Zero-Moment-Point (ZMP) to remain within the footprint of the Support Convex Polygon (SCP) 

to achieve stable walking. This technique was first introduced by Vukobratovic [M. 

Vukobratovic, B. Borovac, 2004]. There are numerous control approaches that are in use for 

trajectory modeling, for example, Genetic Algorithms, Neural Networks, Fuzzy Logic and 
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hybrid techniques such as fuzzy-genetic and neuro-fuzzy algorithms. Each of the proposed 

approaches has its own advantages and limitations and will not be discussed here. 

 

2.10.5 Direct Waveform Walking Pattern Generation  

Bipedal robot walking sequences can be seen as a periodic phenomenon composes of various 

phases. The common approach for walking planning is to execute it phase by phase. This 

strategy will allows the biped to change its gait patterns at the end of each walking phase when 

there are changes in environmental conditions. The basic concept of a walking gait pattern 

generator is to generate the CoM trajectory and the swing feet trajectory for the robot. For a 

stable walking posture, the ZMP of the robot always stays within the SCP. Figure 2.24(c) shows 

a typical walking footprint and the ZMP zigzag reference trajectory of a bipedal robot. 

 

Figure 2.24. Typical ZMP trajectories, the red boxes are the robot’s foot step. 

 

The CoM waveform may be produced through piece-wise connection using polynomial 

functions, cyclic function generators or tracking based intelligent pattern generation algorithm.   

Some of the common trajectory-based paths found in literature are: 
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Cubic path:   𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3. 

Polynomial path:  𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯+ 𝑎𝑛𝑡

𝑛 .                

Harmonic path:  𝑞(𝑡) = 𝑎0 + 𝑎1 cos 𝑎2 𝑡 + 𝑎3 sin 𝑎2 𝑡 .                

Cycloid path:   𝑞(𝑡) = 𝑞0 +
𝑞𝑓−𝑞0

𝜋
(
𝜋(𝑡−𝑡0)

𝑡𝑓−𝑡0
−
1

2
sin(

2𝜋(𝑡−𝑡0)

𝑡𝑓−𝑡0
)) .                        

(2.16) 

 

The cycloid and the harmonic functions are most commonly used due to their simple 

expressions; however, the disadvantage is their nonlinearity. The cubic path function can provide 

a good trajectory motion, however, any increase in the end point constraints, such as low jerk or 

zero acceleration, higher degree of polynomials are needed. 

 

2.10.6 ZMP Tracking Gait Pattern Generation   

Although there are various proposed methods found in literature, but the two most widely 

applied methods are the LQR [T. Nguyen, W.K. Dae et al., 2008] and the preview control 

approach [S. Kajita, F. Kahehiro et al., 2003]. 

 

2.10.6.1 State Space Model  

If a constraint (z-axis) control is applied to an inverted pendulum as discussed in previous 

section, such that the mass can only move horizontally with constant height along the z-plane, 

we obtain a simplified Linear Inverted Pendulum Model (LIPM). Please refer to Appendix B for 

details description. The ZMP equation in the x-axis (sagittal plane) can be derived as 

 

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 −
𝑧𝑐𝑜𝑚

𝑔
�̈�𝑐𝑜𝑚   .                                       (2.17)                                                  

 

The LIPM equation(2.17) can be re-arranged into the ZMP state space form  by defining a new 

variable, the jerk ( 𝑥 ) of the LIPM in the x-axis, to be the control input u, the ZMP equations can 

now be expressed in state-space form 

𝑢𝑥 = 𝑥𝑐𝑜𝑚  , 
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𝑑

𝑑𝑡
[

𝑥𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

] = [
0 1 0
0 0 1
0 0 0

] [

𝑥𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

] + [
0
0
1
] 𝑢𝑥  , 

𝑥𝑧𝑚𝑝 = [1 0 −
𝑍𝑐

𝑔
] [

𝑥𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

].                                             (2.18) 

2.10.6.2 LQR Control Method  

Refer to Figure 2.25. A full state LQR with observer feedback tracking system is applied to 

perform the ZMP tracking control. The parameters (𝑄, 𝑅, 𝐾𝑟) need to be tuned and optimized 

during the tracking process. The sample trajectories of the ZMP and CoM waveforms tracking 

are as shown in Figure 2.25. The controller is able to track the reference waveform with some 

overshoot.  

 

 

Figure 2.25. LQR with observer waveform generation block diagram. 
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Figure 2.26. LQR tracking waveforms. 

2.10.6.3 Preview Control Method   

This method was first proposed by Kajita [S. Kajita, F. Kahehiro et al., 2003], as depicted in 

Figure 2.27, using the techniques mentioned in Thomas [T.B. Sheridan, 1966] preview control 

concept. By applying equation (2.19), defining a cost function and solving the Riccati equation, 

an optimal controller may be designed. The performance index is specified as 

 

(2.19) 

where ∆𝒙(𝑘) = 𝒙(𝑘) − 𝒙(𝑘 − 1) denote the state vector, ∆𝒖(𝑘) = 𝒖(𝑘) − 𝒖(𝑘 − 1) is the 

control input, and  𝑸𝒆, 𝑅 > 0 and 𝑸𝒙 is a 3 × 3 symmetric non-negative definite matrix. The 

preview controller which minimizes the cost function index with preview for future  𝑁𝐿 steps is 

determined by  

(2.20) 

where 𝑮𝒊 is the error gain, and 𝑮𝒙 is the state feedback gain. Note that  𝐺𝑝(𝑗) is the preview gain 

introduce into the control feedback loop to overcome the overshoot, as depicted in Figure 2.28.  
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Figure 2.27. Preview controller block diagram. 

 

Figure 2.28. Preview Gain 𝐺𝑝. 

2.11 Stabilizer  

In general, bipedal robot is not a perfect rigid mechanism, and the ground condition is on a even 

flat ground. Due to modeling errors, uneven ground conditions and disturbances from 

surroundings, the robot will not walk steadily without a stabilization controller. In most 

situations, based on sensors information, a real-time feedback control with build-in stabilization 

algorithms is used to modify the biped gait trajectories to achieve stable walking, this is 

illustrated in Figure 2.29. Such stabilizers were discussed extensively in [J. Yamaguchi, A. 

Takanishi et al., 1995], [K. Hirai, M. Hirose, Y. Haikawa et al., 1998], [K. Hashimoto, Y. 

Sugahara et al., 2006], [Y. Choi, D. Kim et al.,2007]. 
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Figure 2.29. A typical feedback and stabilizer control block diagram. 

 

2.12 Chapter Summary 

This chapter summarised state of the art engineering research and developments of humanoid 

robotics. Humanoid robotics addresses the emerging field of intelligent systems equipped 

artificial cognitive skills and is becoming popular in recent years; anthropomorphic bipedal 

robots are now studied by a variety of scientific disciplines such as biomechanics, mechatronics, 

machine learning and biomedical engineering. There are a multitude of institutional teams and 

industry researchers creating and studying the bipedal robots behaviors worldwide. With the 

ageing population, the needs in terms of elderly-care robots and service robots with innovating 

cognitive technologies and artificial intelligence created a professional application arena for 

humanoid robotics. 
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Chapter 3 

Mechanical and System Architectures  

A life-size humanoid robot is complex and expensive from we see in the market till now. To take 

a step ahead in this area of research, it is obvious to seriously look into the robotic complexity 

and the cost effectiveness. Therefore, in this research, an important challenge is to design and 

develop a comparatively low cost mid-size humanoid bipedal that has a simple anthropomorphic 

mechanical structure. At the same time, we need to ensure that this robot platform is suitable for 

use in both engineering research and educational learning. Refer to Figure 3.1on the proposed 

targeted sector. This chapter gives an overview on the approach taken on design of the humanoid 

bipedal robot TPinokio. The robot is designed and developed over the last three years as an 

experimental and educational platform for studying of robot walking behavior. The design 

concept of the robot mechanical structure, the modular joint mechanism, the passive-toe and the 

control electronics architectures are presented in subsequent sections. 

 

Figure 3.1. TPinokio Targeted robotic market sector. 
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3.1 Mechanical Structure 

TPinokio is a mid-size robot with height approximately 1.6 meter and weighs approximately 

58kg as depicted in Figure 3.2. A compact and modular-joint mechanical structure has been 

successfully implemented on this robot. Another special feature of this robot is that it has feet 

with simple passive-toe mechanism, and there is a ‘feet contact forces’ feedback. These feedback 

mechanisms are the load cells mounted on the foot sole and a 6-axis force-torque sensor mounted 

at the joint ankle. Some of the key design concepts and features of TPinokio are: 

 A mid-size human-like body with 55 Degree of Freedom (DoF) revolute actuators.  

 A modular-joint design which will lead to the robot to have simple kinematics and the 

body structure can then be easily modeled as a multiple point- mass system.  

 A set of uncomplicated kinematics and dynamics models of the robot that are simpler to 

implement mathematically and also are easier to simulate using MATLAB software 

programs. 

 
             

  

Figure 3.2. Mechanical structure of TPinokio. 
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3.1.1 TPinokio Design Concept  

As discussed in previous section, the primary features in the design of TPinokio are to be a low 

cost, modular and light weight robot.  The rationale in pinning to these considerations is to 

enhance the robot, that is under research, to be as commercially viable as much as possible and 

also be useful to mankind in a sense that it is convenient and practical to use the robot, and not 

just an ‘ideal’ robot but not practical to use due to size and complexity.  The ‘practical to use’ 

feature stands out well especially with its flexible modularity and portability design concept. 

Upon successful completion of the robot with these features, it is no doubt that the outcome of 

the research works will be useful and widely used by all. Following are the salient features of 

TPinokio robot:  

 Comparatively low cost: All components selected were carefully evaluated prior to 

procurement. Amongst the Bill of Material (BoM) for the robot, the most expensive 

component is the harmonic gear system. 

 For Research: The modular design of TPinokio provides a good test-bedding platform for 

researcher, it can be easily modeled as multi-body point-mass system, and this is a 

common assumption adopted by most literatures. 

 For Education: A wide range of low cost sensors and electronic gadgets may be added to 

the robot, with the user friendly LabVIEW interface, many interesting and interactive 

educational software can be easily developed for beginners. 

 Simple mechanism: The mechanical structure is designed for easy maintenance and 

system modeling.  

 

The passive toe-feet design is to achieve a more natural walking posture and to achieve a higher 

step clearance as depicted in Figure 3.3 and Figure 3.4. 

 

The maximum step the robot can reach with and without toe-feet is as listed in Table 3.1. 
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Figure 3.3. Advantages of having toe-feet design.  

 

 

Figure 3.4. TPinokio robot step size. 

 

Table 3.1. Maximum step size. 

Pelvis (CoM) height  Maximun step size  

with flat-feet 

Maximun step size  

with toe-feet 

700mm 350mm 480mm 

600mm 450mm 570mm 
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3.1.2 Other Design Considerations 

Other general considerations are: 

 Real-time operation: The communication protocol should be real-time with high update 

rate for the controller. 

 Power requirement: The energy consumption should be optimized. 

 Environmental safety:  The walking and drives mechanism must not damage the floor or 

ground surface. 

 Modular: The mechanical structure should be in modular form, to allow for easy 

maintenance, testing and upgrades.  

 Size and Weight: The weight and size of the robot should be manageable for lab and field 

trial testing. 

 

3.1.3 Configuration and Degree of Freedom (DoF)  

TPinokio size and structure was carefully designed to allow the robot to maneuver safely in a 

normal human daily life living environment space and also appears user-friendly as illustrated in 

Figure 3.5.  

 

Figure 3.5. Human living environment and space. 
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When designing the robot, the author took into consideration of the work space of the robot’s 

arm and hand so that the robot’s hand can reach for light switches, table top and other objects in 

the human living indoor environment. To assimilate a mid-size human body structure, the 

shoulder height of the TPinokio is approximately 1200 mm from the ground. This shoulder 

height will allow the robot to reach to objects at a height of 1700mm (for example, items from 

the kitchen cupboard) with the arm extended. The robot’s legs are 800mm long so that it can 

easily clear a step height of 50(w) x 100(H) mm (for example curb in some houses). In doing so, 

the robot can easily climb stairs and to perform motion maneuver similar to human being. The 

design also allows the robot to pass through doorways and corridors. The actuator motors and 

gears are selected based on the maximum possible torque. The power required by each joints, the 

general specifications and key components of TPinokio are outlines in Figure 3.6. The movable 

ranges of the joints are shown in Figure 3.7. 

 

 

Figure 3.6. General specification of the TPInokio robot. 
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Body segment Joint Angle Ranges  

(similar to a Human )  

Neck Pitch  

Yaw 

-30
o
 to 90

o 

-80
o
 to 80

o 

Shoulder Roll 

Pitch 

Yaw 

-90
o
 to 90

o 

-120
o
 to 120

o 

-90
o
 to 90

o 

Elbow Pitch 0
o
 to 130

o
 

Wrist Pitch 

Yaw 

-30
o
 to +30

o 

-45
o
 to +45

o
 

Waist Roll 

Pitch 

Yaw 

-50
o
 to 50

o 

-20
o
 to 70

o 

-70
o
 to 70

o 

Hip  Roll 

Pitch 

Yaw 

-60
o
 to 45

o 

-130
o
 to 45

o 

-90
o
 to 60

o
 

Knee  Pitch 0
o
 to 150

o
 

Ankle  Roll 

Pitch 

-20
o
 to 30

o 

-30
o
 to 80

o
 

Passive toe Pitch 0 to 45
o
 

 

Figure 3.7. Movable ranges of the TPinokio robot. 

 

3.2 Hardware Architecture  

The hardware architecture of the TPinokio is as illustrated in Figure 3.8. The overall control and 

hardware system configuration is shown in Figure 3.9. The robot is designed with scalability, 

modularity and standardized interfaces. The main communication protocol interface between the 

main controller and the individual modules are based on the CANbus and USB. CANBus was 

chosen as the main communication protocol because it provides high speed, good noise 

immunity and good fault tolerance.  The main controller chosen is a light weight 10” note book 

computer because of its light weight, small size, reasonable battery life, and easy window OS 

programming environment. It also has great variety of extension through USB interface, for 

instance, digital and analog I/O cards. The main controller tasks are to calculate the gait 

trajectory patterns, synchronize the motor motion, updates of sensory data and control the joint 

position. It also provides data communication between joystick command and the base station 

through wireless WLAN.  
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Figure 3.8. Overall control of the TPinokio robot. 

 

 

Figure 3.9. Hardware System Configurations. 
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3.2.1 Motion Control Structure  

The motion control system includes the subsystem controllers, joint servo, motor drivers, angle 

encoders and the homing sensors. Eight load cell sensors are mounted on each corner edge of the 

foot-print to provide contact forces feedback on the ground surface, and a better accuracy 6-axis 

F/T sensor is mounted on the ankle-foot joint to provide active forces feedback. There is one 9-

axis IMU sensor located on the robot waist to provide posture/balancing feedback. Each rotatory 

joint is control by a 150w DC motor fitted with harmonic gear and pulley-belt. The DC motors 

are controlled by EPOS2, and the EPOS2 is located near the modular joint housing, this is to 

eliminate long wiring and signals interference. The main features of the EPOS2 controller is 

compact, lightweight, high power output with built-in CANbus. 

 

3.3 Software Architecture 

The system software comprises of three main Modules. The first module is for vision and image 

processing. The second module is for walking pattern planning and gait generation. The third 

module is for lower level PID motion control. 

 

3.3.1 Computer System Structure  

The overall control system of the TPinokio comprises of the sensory modules and the motion 

control modules. The operating system is PC based Windows 7 and the programming software is 

LabVIEW. The communication between the main controller and sub-modules is through 

CANbus protocol at 1Mbps. The system can also be controlled through wireless LAN Ethernet 

100Base-T by the mobile base station. 

 

3.3.2 Graphic User Interface 

The GUI is written in NI LabVIEW, as shown in Figure 3.10. The NI LabVIEW is user-friendly 

and is an effective programming platform for both researchers and students. The price of the NI 

LabVIEW software is reasonable and affordable for educational purposes. 
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Figure 3.10. TPinokio GUI with LabVIEW. 

 

3.4 Modular-Joint Design Concept 

The joint shaft of the TPinokio is driven by DC motor fitted with harmonic drive and pulley-belt. 

As shown in Figure 3.11, the encoder sensors, controller electronics and wiring harness are 

housed in a compact housing. Most of the parts and components are standardized with 80% of 

similarity in specifications, except for the motors and the harmonic gears. The motors and 

harmonic gears have different specification due to the requirement for different torques at 

different joints. As depicted in Figure 3.12, with such a design concept, the modular-joint can be 

easy swapped, reconfigured, or dismantled for maintenance. 

       

Figure 3.11. Compact modular housing. 
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Figure 3.12. Compact modular-joint parts. 

 

The connections between each compact module are depicted in Figure 3.13. The communication 

between joints is through CANbus interface with a single five core cable, three wires for the 

CANbus protocol, and two wires for the power supply. Such a design greatly eliminated the 

messy cabling that is found in many existing robots. 

 

Figure 3.13. Simple cable connections between each compact module. 
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3.4.1 Feet with Passive-Toe and Force Sensor 

The passive-toe design is shown in Figure 3.14.  In the design, there are 8 load cells, the toe joint 

torsion spring constant is designed with 30Nm/rad, and the rotating angle of the passive toe joint 

is limited to 45
o
. The leg mechanism is designed to cater for ‘stretched walking’ and jumping. 

Two torsion springs are included in the design to increase the spring constant when there are 

running and bouncing activities. Incorporating the toe-feet design into the robot design, we can 

achieve a faster walking gait motion, a smoother climbing motion, and also gives a lower 

bending posture with good ground contact from the robot. 

 

 

 

Figure 3.14.  Foot mechanism with passive toe. 

 

3.4.2 Foot force Sensor and Measurement  

3.4.2.1 Load Cell Sensor 

Every foot sole and the toes are fitted with four load-cell sensors to measure the ground reaction 

forces, a total of eight load-cell sensors (matching pairs, from commercially available digital 

weighing machine) per foot. A full bridge circuit is as shown in Figure 3.15. The maximum 

output value is around 4.5v.  
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Figure 3.15. Full bridge load cell sensing circuit. 

 

During the SSP or DSP phase, the Zero-Moment-Point (ZMP) can be calculated by measuring 

the individual ground contact reaction forces.   

 

For single foot support, as illustrated in Figure 3.16, the ZMP location can be calculated as 

 

𝑥𝑧𝑚𝑝 =
∑ 𝑝𝑖𝑥𝑓𝑖
8
𝑖=1

∑ 𝑓𝑖
8
𝑖

, 𝑦𝑧𝑚𝑝 =
∑ 𝑝𝑖𝑦𝑓𝑖
8
𝑖=1

∑ 𝑓𝑖
8
𝑖

.                                (3.1) 

 

Figure 3.16. Single Support Phase (SSP) and the ZMP location. 
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For double feet support, as illustrated in Figure 3.17, the ZMP location can be calculated as 

 

𝑥𝑧𝑚𝑝 =
𝑝𝐿𝑥𝑓𝐿𝑧+𝑝𝑅𝑥𝑓𝑅𝑧

𝑓𝐿𝑧+𝑓𝑅𝑧
  , 𝑦𝑧𝑚𝑝 =

𝑝𝐿𝑦𝑓𝐿𝑧+𝑝𝑅𝑦𝑓𝑅𝑧

𝑓𝐿𝑧+𝑓𝑅𝑧
  .                                (3.2) 

 

Where  𝑓𝑅 = [𝑓𝑅𝑥 𝑓𝑅𝑦 𝑓𝑅𝑧]
𝑇
 , 𝑓𝐿 = [𝑓𝐿𝑥 𝑓𝐿𝑦 𝑓𝐿𝑧]

𝑇
,  

and     𝑃𝑅 = [𝑃𝑅𝑥 𝑃𝑅𝑦 𝑃𝑅𝑧]
𝑇
,  𝑃𝐿 = [𝑃𝐿𝑥 𝑃𝐿𝑦 𝑃𝐿𝑧]

𝑇
. 

 

 

Figure 3.17. Double support phase (DSP) ZMP location. 

 

3.4.2.2 Six-axis Force Torque Sensor  

A six-axis force torque sensors (FTS) as shown in Figure 3.18(a) are mounted at the robot ankle-

foot joint to measure the forces and torque that are acting on the feet. The FTS equations to 

measure and estimate the ZMP location as illustrated in Figure 3.18(b) can be expressed as 

 

𝑥𝑧𝑚𝑝 =
(−𝜏𝑦−𝑓𝑥𝑑)

𝑓𝑧
      ,     𝑦𝑧𝑚𝑝 =

(𝜏𝑥−𝑓𝑦𝑑)

𝑓𝑧
  .                                    (3.3) 

where d is the distance of the sensor from the ground. 𝑓𝑥 , 𝑓𝑦 and 𝑓𝑧 are the forces in the x-axis, 

y-axis and z-axis respectively. 𝜏𝑥 , 𝜏𝑦 are the torques about the x and y-axis respectively. The 

coordinate of all the points about the x-axis are  
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𝑝𝑧𝑚𝑝 = [𝑥𝑧𝑚𝑝 𝑦𝑧𝑚𝑝 0]𝑇 , 

𝑝𝑓 = [0 0 𝑑]𝑇 .                                                            (3.4) 

 

 

Figure 3.18. FTS measurement and estimation of ZMP location. 
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3.5 Force, Power and Stress Analysis of TPinokio 

In this section, the maximum power required by each joint in order to perform basic movements, 

jumping and objects handling tasks will be derived. These values will help in the sizing of 

actuator power and gear ratio for each joint. Some assumptions were made to the modeling to 

simplify the calculation.    

 

3.5.1 Jumping Stress Analysis 

During jumping action, the whole body goes through four main phases of the actions. The key 

frames of the phases are presented in Figure 3.19. 

 

.      Figure 3.19. Jumping sequences key frames. 

 

Refer to Figure 3.20, let the CoM of the robot is at the pelvis location point E, when the whole 

body is about to take off, the velocity of the CoM is 𝑣𝑐. If the jumping height is  𝐻 = 0.15𝑚, the 

jumping velocity 𝑣𝑐 can be calculated with the equation  𝑣𝑐
2 = 2𝑔𝐻, where 𝑔 is the gravity 

constant.  

𝑣𝑐 = √2𝑔𝐻 = 1.72 𝑚/𝑠.                                                          (3.5) 
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Figure 3.20. Jumping height and Velocity 

 

For phase 2, as depicted in Figure 3.21, according to the biomechanical research in jumping 

literature, an efficient posture for jumping takeoff are at the angles 𝜃𝐴, 𝜃𝐵, 𝜃𝐶  , and these values 

are 90
o
, 100

o
 and 75

o
 respectively. Assume from phase 2 to phase 4, the average action time is 

 ∆𝑡 = 0.2𝑠, which is the time taken from the moment the robot bends its posture from standing 

position to the maximum angle to the time the toes leave the ground.  

Let the maximum power required by the single hip pitch, knee pitch and ankle pitch actuators to 

perform jumping be 𝑃ℎ, 𝑃𝑘 , 𝑃𝑎 respectively, and 𝐿1 = 0.329𝑚, 𝐿2 = 0.25𝑚 , 𝜃1 = 65
𝑜 , 𝜃2 =

15𝑜. Applying the following equations, the total power consumption can be calculated. 

  

The bending height is given by        

∆𝐻 = 𝐿1(1 − 𝑐𝑜𝑠𝜃1) + 𝐿2(1 − 𝑐𝑜𝑠𝜃2) = 0.198𝑚 .                              (3.6) 

The total energy required by both legs is  

 2(𝑃ℎ + 𝑃𝑘 + 𝑃𝑎) ∙ ∆𝑇 = 𝑚𝑔 ∙ ∆𝐻 +
1

2
𝑚𝑣𝑐

2 .                                        (3.7) 

And the total power required by a single leg is 

𝑃ℎ + 𝑃𝑘 + 𝑃𝑎 =
(𝑚𝑔 ∙ ∆𝐻 +

1
2𝑚𝑉𝑐

2)

2∆𝑡
=
58 × 9.81 × 0.198 +

1
2 × 58 × 1.17

2

2 × 0.2
= 380.89 𝑤. 

(3.8) 
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Figure 3.21. Robot body bending parameters. 

 

By observing the human jumping posture, as illustrated in Figure 3.22(a), the ankle angular 

velocity changes from 0 at Phase 2 to a maximum value at the end of Phase 3, and the 

acceleration from maximum to 0 value, see Figure 3.22(b).  

 

Figure 3.22. Acceleration and angle of the robot ankles. 
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The derivation is a complex process. We will simplify the procedure to one variable acceleration 

motion for easy calculation as follows:  

Let the slope be  𝛼 = 𝑘1 − 𝑘2𝑡 , and 𝑡 = 0.2𝑠, at point B  

𝛼 = 𝑘1 − 𝑘2 × 0.2 = 0,       𝑘2 = 5𝑘1.                                      (3.9)                                                    

The angular velocity and the angle can be derived form (3.9) as  

𝜔 = ∫𝛼𝑑𝑡 = 𝑘1𝑡 −
1

2
𝑘2𝑡

2.                                                   (3.10) 

For t = 0.2s, 

∆𝜃 = 𝜃4 − 𝜃3 = ∫ 𝜔𝑑𝑡 =
0.04

3

0.2

0
𝑘1.                                       (3.11) 

Let set  ∆𝜃 ≈ 15𝑜 , from (3.9) and (3.10), we can derive  

𝑘1 = 19.63 ,  𝜔|𝑡=0.2 = 1.963 𝑟𝑎𝑑/𝑠. 

At point B, the maximum ankle torque for both ankles, where 𝑙 = 0.157𝑚 is the sole length, is 

𝑐𝑜𝑠𝜃5 =
𝑚𝑔𝑙

2𝜏𝑎
 .                                                                  (3.12) 

Let assume 𝜃5 ≈ 35
𝑜, and the ankle torque can be determined by  

𝜏𝑎 =
𝑀𝑔𝑙

2𝑐𝑜𝑠𝜃5
=
58 × 9.81 × 0.157

2𝑐𝑜𝑠35𝑜
=
89.33

1.638
= 54.53𝑁𝑚 ,                  (3.13) 

𝑃𝑎 = 𝜏𝑎 ∙ 𝜔 = 54.53 × 1.963 = 107.04𝑤 . 

For the hip and knee, they both have the same starting velocity as well as the ending velocity, 

and the force is  𝑓ℎ = 𝑓𝑘 = (𝛼 + 𝑔)𝑚, the average power ratio can be deduced as 

𝑃ℎ
𝑃𝑘
≈
𝑓ℎ
𝑓𝑘
≈

𝑚𝑢𝑏𝑜𝑑𝑦

𝑚𝑢𝑏𝑜𝑑𝑦 +𝑚ℎ
=

20.3

20.3 + 10.5
= 0.66 .                             (3.14) 

From equation (3.8)  

𝑃ℎ + 𝑃𝑘 = 380.89 − 𝑃𝑎 = 380.89 − 107.04 = 273.84𝑤 .                    (3.15) 

And from the force ratio equation (3.14)  

  𝑃𝑘 = 164.96𝑤 , 𝑃ℎ = 108.87𝑤 .                                      (3.16) 

When the body is in Phase 3, the angular velocities of hip pitch and knee pitch approach 0, same 

as end of Phase 2. Thus, the two joints go through an accelerated and decelerated motion. We 

can calculate the average angular velocity 
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𝜔ℎ =
∆𝜃

∆𝑡
=
𝜋 − ∠𝐴

∆𝑡
=
𝜋 − 0.5𝜋

0.2
= 7.85𝑟𝑎𝑑/𝑠,                        (3.17) 

and  

𝜔𝑘 =
∆𝜃

∆𝑡
=
𝜋 − ∠𝐵

∆𝑡
=
𝜋 − 0.55𝜋

0.2
= 6.98𝑟𝑎𝑑/𝑠 .                          (3.18) 

For 𝑃 = 𝜏𝜔, the torque requirement for the knee and hip can be determined.  

𝜏ℎ =
𝑃ℎ
𝜔ℎ

=
108.87

7.85
= 13.87𝑁𝑚 , 

and 

𝜏𝑘 =
𝑃𝑘
𝜔𝑘

=
164.96

6.98
= 23.63𝑁𝑚 . 

(3.19) 

3.5.2 Landing Stress Analysis  

When the robot lands on the floor from the highest point, the posture of the body goes through 

four phases as depicted in Figure 3.23. 

 

Figure 3.23. Phases of landing. 

Assumed that the average impulse force when the robot landed is
IF  , and the velocity of the 

body at the instant the toes just touching the floor is 𝑣𝑑 = 1.72𝑚/𝑠, we write the following 

equations 
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1

2
𝑚𝑣𝑑

2 = 𝑚𝑔𝐻𝐽 , 

(𝐹𝐼 −𝑚𝑔)∆𝑡𝑑 = 𝑚𝑣𝑑  .                                                             (3.20) 

Based on the observation from our in-house findings, the time taken is approximately ∆𝑡𝑑 ≈

0.25𝑠, which takes a little longer time than the jumping up case, and the impulse force exerted 

on both legs can be determined by 

𝐹𝐼 =
𝑚𝑣𝑑
∆𝑡𝑑

+𝑚𝑔 =
58 × 1.72

0.25
+ 58 × 9.81 ≈ 968𝑁 .                        (3.21) 

Base on this calculated value and with a safety factor of 1.5, the feet sole shock absorber material 

and the toe-spring mechanism must be able to withstand an impulse force on single leg is 

𝐹𝑠 = 1.5 ×
𝐹𝐼
2
≈ 726𝑁 .                                                          (3.22) 

With the derivations made above, we conclude the jumping and landing force and stress analysis 

of the robot.  

 

3.5.3  Force Analysis of  the Robot Head Pitch and Yaw Motion 

As depicted in Figure 3.24. The maximum total mass of the robot head, including webcam and 

other sensors, is approximately  𝑚ℎ ≈ 4𝑘𝑔 , and the offset from the center axis is 𝑙ℎ =

0.0565𝑚. The maximum neck pitch torque 𝜏𝑛𝑝 required is  

𝜏𝑛𝑝 = 𝑚ℎ𝑔𝑙ℎ = 4 × 9.81 × 0.0565 = 2.217𝑁𝑚 .                        (3.23) 

 

The maximum angular turning velocity of a human neck is around 1600/𝑠 , we design our robot 

to have  𝜔𝑛𝑝 = 180
0/𝑠  to extend its performance, and the power required is  

𝑃𝑛𝑝 = 𝜏𝑛𝑝 × 𝜔𝑛𝑝 = 2.21 × 𝜋 = 6.96𝑤 .                              (3.24) 

 

When the robot is detecting for objects or obstacles on the ground, the head will bend over and 

the maximum torque required from the neck yaw is the same as the pitch movement. Thus, the 

power requirement from the neck yaw actuator is 

𝑃𝑛𝑦 = 𝑃𝑛𝑝 = 6.96𝑤 .                                                                 (3.25) 
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Figure 3.24. CoM location of the robot head.  

 

3.5.4 Force Analysis of Pelvis and Waist Motion 

The robot waist joint (pelvis) is designed with three DoF with pitch, yaw and roll movement. A 

typical human motion measured by using IMU sensors [H.J. Luinge et al., 2002] is depicted in 

Figure 3.25, the values shows that the maximum angular velocity of the pelvis roll, pitch and 

yaw movements are 𝜔𝑝𝑥 = 1 𝑟𝑎𝑑/𝑠 , 𝜔𝑝𝑦 = 2.5 𝑟𝑎𝑑/𝑠 and 𝜔𝑝𝑧 = 1.5𝑟𝑎𝑑/𝑠 respectively. 

 

Figure 3.25. Angular velocity of the pelvis three axis.[H.J. Luinge et al., 2002]. 
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The mass of the upper body of our robot is  𝑚𝑢_𝑏𝑜𝑑𝑦 = 20.3 𝑘𝑔 , and the maximum pitch and 

roll angle are 45
o
 and 30

o
 respectively, as depicted in Figure 3.26. The power requirement for the 

actuators can be determined with the following set of equations.  

With                    𝜔𝑝𝑥 = 1 𝑟𝑎𝑑/𝑠 , 𝜔𝑝𝑦 = 2.5 𝑟𝑎𝑑/𝑠 , 𝜔𝑝𝑧 = 1.5𝑟𝑎𝑑/𝑠,  

The maximum roll torque is 

𝜏𝑝𝑥 = 𝑚𝑢_𝑏𝑜𝑑𝑦 × 0.124 × 9.81 = 24.69𝑁𝑚 , 

so the maximum power required from the roll actuator can be determined as 

𝑃𝑝𝑥 = 𝜏𝑝𝑥 × 𝜔𝑝𝑥 = 24.69 × 1 = 24.69𝑤 . 

The maximum yaw and pitch torque is 

𝜏𝑝𝑦 = 𝜏𝑝𝑧 = 𝑚𝑢_𝑏𝑜𝑑𝑦 × 0.1755 × 9.81 = 34.95𝑁𝑚 , 

so the maximum power required from the yaw actuator can be determined as   

𝑃𝑝𝑧 = 𝜏𝑝𝑧 ×𝜔𝑝𝑧 = 34.95 × 1.5 = 52.42𝑤 . 

The maximum power required from the pitch actuator is  

𝑃𝑝𝑦 = 𝜏𝑝𝑦 × 𝜔𝑝𝑦 = 34.95 × 2.5 = 87.38𝑤.  

(3.26) 

 

Figure 3.26. Robot maximum yaw and pitch angle of the robot. 
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3.5.5 Force Analysis of Arm and Hand 

The maximum torque exists for the case when the arm is fully extends horizontally. We set the 

maximum payload that the hand can handle is 2kg, and the weight and dimension of the arm 

links are listed in Table 3.2. 

 

Table 3.2. Dimension and weight of  robot arm and hand. 

Segment Joint Length (m) Mass(kg) 

Arm elbow 0.244 0.31 

wrist 0.115 0.22 

Hand 0.1 0.25 

 

Let denote the weight of the payload, elbow joint, wrist joint and the hand be 𝑚𝑙, 𝑚𝑒 , 𝑚𝑤, 𝑚ℎ 

respectively as depicted in Figure 3.27. Then the power requirement for individual segment 

when the arm is fully extended horizontally can be determined as follows:  

 

 

Figure 3.27. Dimension and CoM location of arm joints. 
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For the wrist:  𝜏𝑤 = (𝑚𝑙 +𝑚ℎ)𝑔 × 0.1 = (2 + 0.25) × 9.81 × 0.1 = 2.207𝑁𝑚 . 

For the elbow: 𝜏𝑒 = (2.25 × 0.215 + 0.22 × 0.115) × 9.81 = 4.99𝑁𝑚 .  

For the shoulder: 𝜏𝑠 = (2.25 × 0.459 + 0.22 × 0.359 + 0.31 × 0.244) × 9.81 = 11.64𝑁𝑚 . 

(3.27) 

In order to determine the power requirement for each joint, parameters from Figure 3.28 were 

taken as reference. It shows an experiment data of the angular velocity of a human upper arm 

[H.J. Luinge et al., 2002]. The measurement is based on some general tasks such as drinking and 

combing hair. 

 

Figure 3.28. Angular velocity of a human upper arm [H.J. Luinge et al., 2002]. 

 

From the diagram above, we can see that the maximum angular velocity is about 1.5 srad / . So 

using the maximum value, the power required by each joint can be estimated as: 

For the wrist:  𝑃𝑤 = 𝜏𝑤 × 𝜔 = 2.205 × 1.5 = 3.3𝑤 . 

For the elbow:  𝑃𝑒 = 4.99 × 1.5 = 7.49𝑤 .  

For the shoulder: 𝑃𝑠 = 11.64 × 1.5 = 17.46𝑤 . 

(3.28) 

3.5.6 Force Analysis of Hand and Fingers 

There are different ways of grasping an object, the type as illustrated in Figure 3.29 is an extreme 

way to grasp an object because more grasping force is required by the fingers to prevent 

slippage. The forces relationship are denoted as follows: 𝐹𝑓 is the friction force between the 
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fingers and the object, 𝐹𝑝 is the normal force acting on the contact object interface,
 
𝑇𝑓 is the 

torque generated by the normal force. The weight of the object is  𝑚 = 2𝑘𝑔, the distance from 

the midpoint of the hand is 𝑑 = 0.05𝑚, 𝑔 = 9.81𝑚/𝑠2  is the gravity acceleration and 𝜇 =

0.5 denotes the static friction coefficient of the rubber fingers. The maximum power required 

form the fingers can be determined as 

𝐹𝑔 = 𝑚𝑔 = 2𝐹𝑓 , 

𝐹𝑝 =
𝐹𝑓

𝜇
=
𝑚𝑔

2𝜇
 .                                                               (3.29) 

The normal torque from the fingers to grasp is 2kg object is  

𝑇𝑓 = 𝐹𝑝 × 𝑑 =
𝑚𝑔

2𝜇
× 𝑑 =

2 × 9.81

2 × 0.5
× 0.05 = 0.98𝑁𝑚 .                           (3.30) 

The maximum power required by the fingers is  

𝑃𝑓 = 𝑇𝑓𝜔 = 0.98 ×
𝜋

2
= 1.54𝑤 .                                              (3.31) 

 

 

 

Figure 3.29. Grasping forces analysis of a robot hand.  

 

3.5.7 Walking Energy Requirement 

As discussed in Chapter 2, gait cycle has two phases: double leg support and single leg support 

phase. As illustrated in Figure 3.30, the walking cycle usually starts from the heel ground contact 

of the swing foot and heel-off of the stance foot. 
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Figure 3.30. Gait cycle of walking. 

From biomechanics literature [H.J. Luinge et al., 2002], the average walking energy required by 

a human, expressing in terms of walking speed, can be approximated by the following equation  

𝑃 = 𝑚(2.23 + 1.26𝑣2) ,                                                      (3.32) 

where m is the mass, 𝑣 is the velocity of the centre of gravity in m/s and P is the power 

consumption in watt (w). Apparently, the power consumption is lesser for a slower walking 

speed. This equation will be used as a reference to calculate the power consumption of the 

TPinokio robot. The total mass of the robot is 58kg, and its average walking speed is 0.3m/s, 

from equation (3.32), we can determine the power 

𝑃 = 58(2.23 + 1.26 × 0.32) = 135.92𝑤 .                                       (3.33) 

From literature, considering most similar size robots should operate for around 2 hrs, using 

Lithium-ion battery with the capacity of 24v-12AH, the maximum operational time for TPinokio 

robot is around 2 hrs.  

 

3.5.8 Hip and Ankle Power Analysis 

In the walk motion, the pelvis of the bipedal robot will swing from side to side, forward and 

backward depending on posture requirement. The most frequently executed motion is to swing 
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the pelvis and upper body from single support leg to double leg position, and these actions need 

sufficient power to execute as illustrated in Figure 3.31. 

 

Figure 3.31.  (a) Ankle roll to single support standing, (b)Hip roll in to double support. 

 

3.5.8.1 Ankle Roll Power Requirement 

As depicted in Figure 3.31(a), the robot is in right leg support after the left leg swing off the 

ground. The right ankle joint actuator will need to drive the pelvis and upper body to a stable 

right leg support position. The weight of the robot is 58kg and the width between the two legs is 

𝑙 = 0.215𝑚, the maximum torque can be determined as  

𝜏𝑚𝑎𝑥 = 𝑚𝑔 ∙
𝑙

2
= 58 × 9.81 ×

0.215

2
= 61.17𝑁𝑚 .                              (3.34) 

This action is estimated to take about 0.2~0.4s from normal standing to single support standing, 

and the angle change is about 7
o
, we use the average of 0.3s, so the average angular velocity is  

𝜔 =
∆𝜃

∆𝑡
=
7𝜋/180

0.3
≈ 0.41𝑟𝑎𝑑/𝑠 .                                          (3.35) 

And the maximum power of the ankle roll can be calculated  

𝑃𝑎𝑛𝑘𝑙𝑒_𝑟𝑜𝑙𝑙 = 𝜏𝑚𝑎𝑥 ∙ 𝜔 = 61.17 × 0.41 = 25.07𝑤 .                                (3.36) 
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3.5.8.2  Hip Roll Power Requirement  

As depicted in Figure 3.31(b), assume right leg single support, the robot now recovers to normal 

double support standing. The width between the two legs is 𝑙 = 0.215𝑚𝑚 and the total mass of 

the upper body and the right leg is 𝑚𝑢𝑝_𝑙𝑔 = 30.14𝑘𝑔 . The maximum torque required by the hip 

roll actuator can be determined as  

𝜏𝑚𝑎𝑥 = 𝑚𝑢𝑝_𝑙𝑔 ∙ 𝑔 ∙
𝑙

2
= 30.14 × 9.81 ×

0.215

2
= 31.78𝑁𝑚 .                              (3.37) 

And the average angular velocity is 

𝜔 =
∆𝜃

∆𝑡
=
7𝜋/180

0.3
≈ 0.41𝑟𝑎𝑑/𝑠  ,                                        (3.38) 

The maximum torque required by the hip roll actuator is  

𝑃ℎ𝑖𝑝_𝑟𝑜𝑙𝑙 = 𝜏𝑚𝑎𝑥 ∙ 𝜔 = 31.78 × 0.41 = 13.03𝑤 .                                (3.39) 

 

3.5.8.3 Hip Yaw Power Requirement  

When the robot does a 90
o
 turn, the hip yaw movement of the robot can be divided to in to two 

stages as depicted in Figure 3.32. In the first stage, the right leg turns from the lateral direction to 

the frontal side with the upper body turning about 45
o
 and the left leg remains at stance position. 

While in the second stage, the right leg keeps still, the left leg and the upper body turns another 

45
o
 to the frontal direction. 

 

Figure 3.32. Robot making a 90 degree turning. 
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During the first stage of turning, the turn angle of the upper body 𝜃𝑢𝑝_𝑏𝑜𝑑𝑦 =
𝜋

4
 , the turning time 

is 𝑡 = 0.5𝑠 , and the angular acceleration of the turning is 𝜑 = 2𝑟𝑎𝑑/𝑠2. Given that the rotary 

inertia (𝐼𝑅𝑅) with respect to the upright axis of the left leg is 𝐼𝐻𝑌 = 7.84𝑘𝑔𝑚
2 , which consist 

the rotary inertia of the upper body and right leg, except the left leg. The turning torque can be 

determined as follows:    

𝑇 = 𝐼𝐻𝑌 ∙ 𝜑 = 15.68𝑁𝑚 ,                                                     (3.40) 

and the average angular velocity is 

𝜔 =
𝜃𝑢𝑝_𝑏𝑜𝑑𝑦

𝑡
=
𝜋

2
𝑟𝑎𝑑/𝑠 .                                                    (3.41) 

The total power required for hip yaw is  

𝑃 = 𝑇𝜔 = 24.62𝑤 .                                                              (3.42) 

With the above literature, it concludes the power requirement and torque calculation of the 

TPinokio robot. The power requirement of all the joints motor is listed in Appendix A.  

 

3.6 Chapter Summary  

In this chapter the design and torque analysis of a new mid-size bipedal humanoid walking robot 

with 55 DoF has been presented. The design is optimized for an average walking speed of 

around 0.3m/s and a jumping height of around 0.15m. The hand is able to hold an object weight 

around 2kg. This biped is designed with passive-toe, so it produces more human-like walking 

posture. Another novel feature of the design is that it has compact modular joints with minimum 

mechanical parts. Furthermore, most parts are identical for each joint. This compact modular 

design leads to simple kinematic modeling and easy maintenance.  

The interfacing electronics has also been described in details, including load-cell and 

force/torque sensors board, which is connected to the main controller via USB interface. A single 

5-core wire connection between each compact module reduces the messy wire harnessing 

problems. Using a Notebook as a main controller and window based OS solve lots of 

programming and interfacing issues. LabVIEW real time programming platform provide 

excellent Graphic User Interface (GUI) and by adopting CANbus as the main communication 

protocol provide high speed motion control to the EPOS2 motor controller. The EPOS2 is able to 

provide position, speed and current torque control to the robot joints.  



 

 83 

 

 

CHAPTER 4 

KINEMATICS AND DYNAMICS 

MODEL  

In this chapter, the detail kinematics and dynamics model of the TPinokio robot is presented. 

Kinematics of the motion of a body in a robotic mechanism does not consider the force/torque 

that acting on the body or causes the motion. Dynamic equations of motion show the 

relationships between the forces and momentum exerting on the robot mechanism, and the 

resulting motion trajectories that due to the reacting forces. This chapter will only descript and 

discuss the kinematics models and the Degree of Freedom (DoF) of the bipedal robot lower 

limbs (the hip and both legs), which is the serial-chain of hip-knee-ankle-foot. 

 

4.1 Kinematics Model of TPinokio Robot  

TPinokio is designed with simple revolute joints and is assumed to be a rigid-body system 

consists of multiple symmetrical shape (spherical, cylindrical, rectangular) rigid-objects joined 

together by simple links. Its joints and mechanism were designed to produce a simple kinematics 

model. One feature to be highlighted is that the compact modular housing design (comprise of 

motors, gears, sensors, electronics) and the links to each modular housing joint are fabricated 

with lightweight aluminum. Due to the feature in the robot, the mass and inertia of the links are 

negligible compared to the weight of the modular housing joints. As shown in Figure 4.1, all the 

links may be assumed to have a ‘point-mass’ located at the distal end. Thus, the ‘point-mass’ 

kinematics model of the robot can be accurately modeled because its position can be measured 

accurately.  
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It is noted that other similar robots (LUCY, HRP, LOLA) that use the ‘point mass’ assumption in 

their modeling may not provide an accurate model as compared to our design. The rationale is 

that these robots’ actuators and motors are mounted on the joint’s links, especially for the knee 

joint actuator and the ankle actuator as depicted in Figure 4.2, this is inaccurate to assume zero 

inertia for the joint link.  

 

Figure 4.1.  TPinokio simplified point-mass model. 

 

 

Figure 4.2. Similar robot with actuator mounted on the joint link. 

 

In forward kinematics, the end-effector’s position and its orientation can be easily determined 

once the entire joints’ variables are defined. In the case for the inverse kinematics, each joint 

parameter is calculated from the end-effector position and orientation, and this does not 

necessary provide a closed-form solution. 
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4.1.1 Forward Kinematics with Denavit-Hartenberg Model 

The forward kinematics transforms the kinematic information of a robot joint-link from the joint 

space to the Cartesian space. The most common method is to apply the Denavit Hartenberg (DH) 

transformation. As illustrated in Figure 4.3, the geometric structure and kinematics-chain of the 

TPinokio robot is converted to the D-H notation. The angle rotating direction is based on right-

hand rule. Please refer to Appendix A for more details.  

 

Figure 4.3  TPinokio D-H model and link frames.  
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4.1.2 Inverse Kinematics  

As mentioned in Chapter 2, there are several ways to solve inverse kinematics problem. The 

three commonly used methods are: geometric, iterative and algebraic. For this research, the first 

two methods will be investigated and applied to the TPinokio robot.  

 

4.1.2.1 Geometric Method 

It is assumed that the masses of the upper body of TPinokio are concentrated at point masses 

located at the center of the pelvis/waist; this assumption is generally acceptable with the simple 

inverted pendulum model (IPM) approach. TPinokio robot has 6 DoF for each leg, the 

kinematics parameters are defined as shown in Figure 4.4. The right leg close-form based on 

geometrical method is presented here without details derivations leading to the solutions. 

 

 

 

Figure 4.4 TPinokio robot right leg kinematics stick diagram. 
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Referring to Figure 4.4, the inverse kinematic parameters are as shown in the following set of 

equations without details derivation: 

 

𝑝2 = 𝑝1 + 𝑅1 [
0
𝐷
0
],                                                      (4.1) 

𝑟 = 𝑅7
𝑇(𝑝2 − 𝑝7) ≡ [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇 , 

𝑐 = √𝑟𝑥2 + 𝑟𝑦2 + 𝑟𝑧2, 

𝐶2 = 𝐴2 + 𝐵2 − 2𝐴𝐵 cos(𝜋 − 𝑞5), 

(4.2) 

 

𝛼 = sin−1 (
𝐴 sin(𝜋 − 𝑞5)

𝐶
) , 

𝒂𝒏𝒌𝒍𝒆 𝒑𝒊𝒕𝒄𝒉: 𝑞6 = −𝑎𝑡𝑎𝑛2 (𝑟𝑥, 𝑠𝑖𝑔𝑛(𝑟𝑧)√𝑟𝑦2 + 𝑟𝑧2) − 𝛼 ,                            (4.3) 

𝒂𝒏𝒌𝒍𝒆 𝒓𝒐𝒍𝒍: 𝑞7 = 𝑎𝑡𝑎𝑛2(𝑟𝑦, 𝑟𝑧) ,                                                                        (4.4) 

 

                                         where  𝑐∗ ≡ cos 𝑞∗       ,      𝑠∗ ≡ sin 𝑞∗ ,     

𝒉𝒊𝒑 𝒚𝒂𝒘:  𝑞2 = 𝑎𝑡𝑎𝑛2(−𝑅12, 𝑅22) ,                                                             (4.5) 

𝒉𝒊𝒑 𝒓𝒐𝒍𝒍:  𝑞3 = 𝑎𝑡𝑎𝑛2(𝑅32 , −𝑅12𝑠2 + 𝑅22𝑐2) ,                                         (4.6) 

𝒉𝒊𝒑 𝒑𝒊𝒕𝒄𝒉:   𝑞4 = 𝑎𝑡𝑎𝑛2(−𝑅31, 𝑅33) .                                                            (4.7) 
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4.1.2.2 Iterative Method  

In Chapter 2, it was shown how the Newton-Raphson iterative technique [R.N. Jazar, 2010] is 

applied to solve inverse kinematics problem to determine the closet possible solution 𝜃 from a 

series of nonlinear equations. This method may not produce the correct solution because for 

nonlinear equations there will be normally multiple solutions, and each solution is dependent on 

the initial value. As such, we need to first set the initial position of the robot joints and use these 

positions as the starting values to initiate the iteration in order for the search algorithm to 

perform correctly.  

Please refer to the Appendix B for detail description of the inverse kinematics iteration algorithm 

and technique. The kinematics link of each joint of the TPinokio robot is as shown in Figure 4.5. 

Its link coordinate and numbering notation is listed in Table 4.1. 

 

Figure 4.5. TPinokio robot joint and kinematic links.   
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Table 4.1. TPinokio robot joint link coordinate. 

Lower Body  Upper body 
ID Segment 

name  

link 2  link1 ID Segment 

name 

link2 link1 

1 BODY 0 3 19 neck_J0 32 20 

2 Pelvis_J0 0 17 32 neck_J1 0 0 

3 Rhip_J0 10 4 20 Rshoulder_J0 25 21 

4 Rhip_J1 0 5 21 Rshoulder_J1 0 22 

5 Rhip_J2 0 6 22 Rshoulder_J2 0 23 

6 Rknee_J3 0 7 23 Relbow_J3 0 24 

7 Rankle_J4 0 8 24 Rwrist_J4 0 34 

8 Rankle_J5 0 9 34 Rwrist_J5 0 0 

9 Rfoot_J6 0 30 25 Lshoulder_J0 0 26 

30 Rtoe_J7 0 0 26 Lshoulder_J1 0 27 

10 Lhip_J0 2 11 27 Lshoulder_J2 0 28 

11 Lhip_J1 0 12 28 Lelbow_J3 0 29 

12 Lhip_J2 0 13 29 Lwrist_J4 0 35 

13 Lknee_J3 0 14 35 Lwrist_J5 0 0 

14 Lankle_J4 0 15     

15 Lankle_J5 0 16     

16 Lfoot_J6 0 31     

31 Ltoe_J7 0 0     

17 waist_J0 0 18     

18 waist_J1 0 33     

33 waist_J2 0 19     
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4.1.3 Kinematics Model Verification 

Forward and inverse kinematics is essential tool for a robot to create motion. The TPinokio 

forward and inverse kinematics model is verified by MATLAB simulation. In the simulation, the 

forward kinematics is used to determine the posture of the robot that is derived from the 

predefined joints’ angle, and the inverse kinematics is applied to determine the individual joints’ 

position to achieve a predefined posture. 

 

4.1.3.1 Initial Posture Forward Kinematics Verification  

The initial posture of the robot is determined by using forward kinematics. The initial value for 

each joint is pre-defined and then using the forward kinematics to derive the robot posture, this is 

verification is shown in Figure 4.6. 

 

Figure 4.6.  Robot initial posture is determined by applying forward  kinematics . 

 

4.1.3.2 Walking Gait Generation Inverse Kinematics Verification   

The individual joint angle during walking is determined by applying inverse kinematics (IK). 

Once the orientation of the robot pelvis, right foot and left foot (end-effectors) position is 
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defined, the individual joint may be determined using Newton-Raphson method. This is verified 

as depicted in Figure 4.7.  

  

 

Figure 4.7. Individual joint angle position is determined by inverse kinematics. 

 

4.2  Dynamic Model of TPinokio Robot 

As discussed in Chapter 2, there are various methods to model a bipedal robot walking dynamic. 

In this research, the 3D inverted Pendulum model (3DIPM) is adopted in our analysis due to its 

simplicity and is also found to be a good approximation of our TPinokio kinematics and 

dynamics model. 

 

4.2.1 3D Inverted Single Mass Pendulum Model   

During the swing phase, the Centre of Mass (CoM) of the robot may be modeled as a ‘point 

mass’ system, and it is connected to the support leg like an inverted pendulum as illustrated in 

Figure 4.8. In order to define the relationship of the ZMP and the CoM trajectories, a simplified 

ZMP with Inverted Pendulum Model (IPM) is adopted in this analysis. 
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Figure 4.8. Inverted pendulum model superimposed on to the robot.    

 

Referring to Figure 4.8, by definition, for a plane given by the equation  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 , 

the vector (𝑎, 𝑏, 𝑐) is a normal. In order to model the IPM for bipedal walking, certain constraints 

need to be applied to limit the motion of the inverted pendulum mass. For instance, we define the 

robot walking frontal is in the x-axis direction, and limit the motion by a constraint z-plane with 

vector parameters  (𝑘𝑥, 𝑘𝑦, −1)  and intersect on the z-axis at  𝑧 = 𝑧𝑐𝑜𝑚  . The constraint plane 

can be written as  

 

𝑑 = 𝑧𝑐𝑜𝑚 − 𝑘𝑥𝑥 − 𝑘𝑦𝑦 .                                                  (4.8) 

 

When the constraint plane is set to (𝑘𝑥 = 𝑘𝑦 = 0), i.e. horizontal to the ground surface, we can 

apply this constraint control with equation (4.8) to limit the mass movement, the mass can only 

on this horizontal plane. This technique is used to determine the dynamic behaviors and to derive 

the equations for the IPM system to walk on flat ground, slope and on stairs. This is a good 
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approximation compared to other more complicated approaches. The application of this 

technique will be explained in details in Chapter 5.    

 

An approximation approach can be used to estimate the multi-point mass bipedal robot as shown 

in Figure 4.9, the CoM (𝑥𝑐𝑜𝑚, 𝑦𝑐𝑜𝑚, 𝑧𝑐𝑜𝑚 ) of the robot can be calculated as 

𝑥𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑥𝑖𝑖

∑ 𝑚𝑖𝑖
 , 

 

𝑦𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑦𝑖𝑖

∑ 𝑚𝑖𝑖
 , 

 

𝑧𝑐𝑜𝑚 =
∑ 𝑚𝑖𝑧𝑖𝑖

∑ 𝑚𝑖𝑖
 , 

(4.9) 

where 𝑚𝑖 is the mass and 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) denote the coordinate point. The GCoM 

(𝑥𝑐𝑜𝑚, 𝑦𝑐𝑜𝑚, 0) is defined as the ground projection of the CoM.  

 

Figure 4.9. TPinokio point mass distribution model.    
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As discussed in Chapter 2, the ZMP is defined as a position on the contact surface where the sum 

of all the exerting forces and moments is reduced to zero. For a multi-mass model, where mi 

represents the mass of the particles, the ZMP can be expressed as 

(4.10) 

For our robot design, the masses are concentrated at the links end and the links inertia is assumed 

to be zero. Taking these into consideration, from equations (4.9) and equation (4.10), the ZMP is 

related to the CoM by   

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 −
(𝑧𝑐𝑜𝑚)�̈�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚 + 𝑔

 , 

𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 −
(𝑧𝑐𝑜𝑚)�̈�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚 + 𝑔

  . 

(4.11) 

For constant pelvis height, the �̈�𝑐𝑜𝑚 = 0, so equation (4.11) can be simplified to  

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 −
(𝑧𝑐𝑜𝑚)�̈�𝑐𝑜𝑚

𝑔
 , 

𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 −
(𝑧𝑐𝑜𝑚)�̈�𝑐𝑜𝑚

𝑔
  . 

(4.12) 

It is noted that in the situation where a robot moves at a slow or constant speed, by setting the 

acceleration term  �̈�𝑐𝑜𝑚 and  �̈�𝑐𝑜𝑚 to zero, equation (4.12) can be further simplified to 

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 , 

𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 . 

(4.13) 

Equation (4.12) will be used in the controller design and walking gait generation in Chapter 5.   
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4.2.2 3D Inverted Double Mass Inverted Pendulum Model   

In this section, a new double-mass inverted pendulum model is presented. The lower mass, which 

represents the robot lower body Center-of-Mass (CoM), is constrained to a horizontal plane Z. The 

second mass, which represents the upper body CoM of the bipedal robot, is constrained to deviate in 

small angle variation in Z-axis. The two mass models are depicted in Figure 4.10.  

 

Figure 4.10. Double IPM model. 

Referring to Figure 4.10, the torques and moments equation about the ZMP point is derived as  

𝑚1𝑔(𝑥1 − 𝑥𝑧𝑚𝑝) +𝑚2𝑔(𝑥2 − 𝑥𝑧𝑚𝑝) = 𝑚1𝑧1𝑥1̈ +𝑚2𝑧2𝑥2̈ .                  (4.14) 

 

Where 𝜃 and L is the angle and length of the second link respectively, and  𝑥2 = 𝑥1 + 𝐿 sin 𝜃 , 

𝑧2 = 𝑧1 + 𝐿 cos 𝜃. Substituting these expressions into equation (4.14), we obtain  

 

𝑚1𝑔(𝑥1 − 𝑥𝑧𝑚𝑝) +𝑚2𝑔(𝑥1 + 𝐿 sin 𝜃 − 𝑥𝑧𝑚𝑝) = 𝑚1𝑧1𝑥1̈ +𝑚2(𝑧1 + 𝐿 cos 𝜃)𝑥2̈ .     (4.15) 

 

Based on the constrain that 𝜃 with small deviation (𝜃 ≈ 0𝑜) , we can linearized equation (4.15), with 

𝑥2 = 𝑥1 + 𝐿𝜃 and 𝑧2 = 𝑧1 + 𝐿  the ZMP equation is derived as 

𝑥𝑧𝑚𝑝 = 𝑥1 −
𝑚1𝑧1 +𝑚2(𝑧1 + 𝐿)

(𝑚1 +𝑚2)𝑔
�̈�1 +

𝑚2𝐿

𝑚1 +𝑚2
𝜃 −

𝑚2𝐿(𝑧1 + 𝐿)

(𝑚1 +𝑚2)𝑔
�̈� ,              (4.16) 
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which can be arranged in matrix form 

𝑥𝑧𝑚𝑝 = [1
𝑚1𝐿

𝑚1 +𝑚2
0 0 −

𝑚1𝑧1 +𝑚2(𝑧1 + 𝐿)

(𝑚1 +𝑚2)𝑔
−
𝑚2𝐿(𝑧1 + 𝐿)

(𝑚1 +𝑚2)𝑔
]

[
 
 
 
 
 
𝑥1
𝜃
𝑥1̇
�̇�
𝑥1̈
�̈� ]
 
 
 
 
 

 .    (4.17) 

To convert the equation (4.17) into a standard state space form, we introduce a control input  𝑢 =

[𝑥 𝜃]
𝑇 , and the state  𝑥 = [𝑥1 𝜃 𝑥1̇ �̇� �̈�1 �̈�]𝑇 , the state space model of the double 

inverted pendulum can be written as  

[
 
 
 
 
 
 
�̇�1
�̇�
�̈�1
�̈�
𝑥1
𝜃 ]
 
 
 
 
 
 

⏞
�̇�

=

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0]
 
 
 
 
 

⏞              
𝐴

[
 
 
 
 
 
𝑥1
𝜃
�̇�1
�̇�
�̈�1
�̈� ]
 
 
 
 
 

⏞
𝑥

+

[
 
 
 
 
 
0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

⏞    
𝐵

[
𝑥
𝜃
]

⏞
𝑢

 ,                                    (4.18) 

(4.19) 

The determinant of the double mass IPM model is  

𝑑𝑒𝑡 = [
𝑠𝐼 − 𝐴 −𝐵
𝐶         𝐷

] ,                                                         (4.20) 

and the transfer function for the double mass IPM is 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 = [
1−

𝑚1𝑧1 +𝑚2(𝑧1 + 𝐿)
(𝑚1 +𝑚2)𝑔

𝑠2

𝑠3

𝑚1𝐿
𝑚1 +𝑚2

−
𝑚2𝐿(𝑧1 + 𝐿)
(𝑚1 +𝑚2)𝑔

𝑠2

𝑠3
] .    (4.21) 

We note that the system does not have any zeros [Napoleon, N. Shigeki et al., 2002], [H. Dallali, M. 

Brown et al., 2009].  Equation (4.18) & (4.19) will be used in the gait trajectory generation and 

further discussion in Chapter 5. 
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4.3 Momentum and Motion   

The transformation of the dynamic motion of the robot end effector (the feet and the hip) trajectories 

into an individual link joint trajectory can be carried out with the momentum calculation method [S. 

Kajita, F. Kanehiro et al., 2003]. As illustrated in Figure 4.11, the four reference frames of the robot 

are defined as [∑𝑊 ∑𝐻 ∑𝐿 ∑𝑅], which denote the world frame, the pelvis frame, the left-

foot frame and the right-foot frame respectively. The position and orientation of a point in space 

can be are represented by a translational vector 𝑝3×1 and an orientation matrix 𝑅3×3 in the form of  

[
𝑣

] = [

�̇�

(�̇��̇�𝑇)
∨] .                                                            (4.22) 

The foot velocity of the two legs can be expressed as 

 

[
𝑣𝐿
𝐿
] = [

𝐼3×3 −�̂�𝐻𝐿
0 𝐼3×3

] [
𝑣𝐻
𝐻
] + 𝐽𝑙𝑒𝑔𝐿�̇�𝑙𝑒𝑔𝐿 , 

(4.23) 

[
𝑣𝑅
𝑅
] = [

𝐼3𝑥3 −�̂�𝐻𝑅
0 𝐼3×3

] [
𝑣𝐻
𝐻
] + 𝐽𝑙𝑒𝑔𝑅�̇�𝑙𝑒𝑔𝑅  , 

 

where [𝑣𝐻 , 𝜔𝐻]
𝑇 is the hip velocity,  𝐽𝑙𝑒𝑔𝐿 and 𝐽𝑙𝑒𝑔𝑅 are a (6 × 6) Jacobian matrix of the robot’s 

leg, �̇�𝑙𝑒𝑔𝐿 and �̇�𝑙𝑒𝑔𝑅 are the (6 × 1) joint speed vector of the leg, and 𝑟𝐻𝐿 = 𝑝𝐿 − 𝑝𝐻 and 𝑟𝐻𝑅 =

𝑝𝑅 − 𝑝𝐻 are the position vectors. The  ∗̂ is an operator, which translates the (3 × 1)vector  𝑟𝐻𝐿 and 

𝑟𝐻𝑅 into a (3 × 3) skew symmetric matrix �̂�𝐻𝐿 and �̂�𝐻𝑅 respectively. Referring to Figure 4.11, for 

a given hip and feet velocity, the leg joints angle can be determined as 

�̇�𝑙𝑒𝑔𝐿 = 𝐽𝑙𝑒𝑔𝐿
−1 [

𝑣𝐿
𝐿
] − 𝐽𝑙𝑒𝑔𝐿

−1 [
𝐼3𝑥3 −�̂�𝐻𝐿
0 𝐼3𝑥3

] [
𝑣𝐻
𝐻
] , 

(4.24) 

�̇�𝑙𝑒𝑔𝑅 = 𝐽𝑙𝑒𝑔𝑅
−1 [

𝑣𝑅
𝑅
] − 𝐽𝑙𝑒𝑔𝑅

−1 [
𝐼3𝑥3 −�̂�𝐻𝑅
0 𝐼3𝑥3

] [
𝑣𝐻
𝐻
] . 

 

The linear momentum ℒ(3×1) and the angular momentum 𝒜(3×1) of the CoM of the robot can be 

computed as 
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[
ℒ
𝒜
] = [

𝑚I3×3 −𝑚�̂�𝐻𝐶
0 �̃�3×3

] [
𝑣𝐻
𝐻
]

⏞              
𝐻𝑖𝑝

+ [
𝑀𝐿
𝐻𝐿
] �̇�𝑙𝑒𝑔𝐿

⏞      
𝐿𝑒𝑓𝑡 𝐿𝑒𝑔

+ [
𝑀𝑅
𝐻𝑅
] �̇�𝑙𝑒𝑔𝑅

⏞      
𝑅𝑖𝑔ℎ𝑡 𝐿𝑒𝑔

 ,                             (4.25) 

where m is the robot’s total mass, �̃�3×3 is the inertia matrix with respect to the CoM,  �̂�𝐻𝐶 is the skew 

symmetric matrix of 𝑟𝐻𝐶,  𝑀 and 𝐻 are the inertial matrices of the joints related to the linear and the 

angular momentum respectively. To generate a stable walking motion in sagittal plane, the angular 

momentum of the 𝐶𝑜𝑀𝑥 is set to zero, that is no rotation, and the translation movement of the 𝐶𝑜𝑀𝑥 

can be obtained from Equation (4.25). By definition  ℒ = 𝑚𝐶𝑜𝑀̇ 𝑥 , and we set  𝒜 = 0 , yields 

[𝑚𝐶𝑜𝑀
̇
𝑥

0
] = [

𝑚I3x3 −𝑚�̂�𝐻𝐶
0 �̃�3×3

] [
𝑣𝐻
𝐻
]

⏞              
𝐻𝑖𝑝

+ [
𝑀𝐿
𝐻𝐿
] �̇�𝑙𝑒𝑔𝐿

⏞      
𝐿𝑒𝑓𝑡 𝐿𝑒𝑔

+ [
𝑀𝑅
𝐻𝑅
] �̇�𝑙𝑒𝑔𝑅

⏞      
𝑅𝑖𝑔ℎ𝑡 𝐿𝑒𝑔

  .                      (4.26) 

 

For a given foot velocity([𝑣𝐿 ,𝐿   ]
𝑇
, [𝑣𝑅 ,𝑅   ]

𝑇
) , from equation (4.26), the hip velocity in sagittal 

plane can be derived as  

[
𝑣𝐻
𝐻
] = [

𝑚I3x3 −𝑚�̂�𝐻𝐶
0 �̃�3×3

]
−1

([𝑚𝐶𝑜𝑀
̇
𝑥

0
] − [

𝑀𝐿
𝐻𝐿
] �̇�𝑙𝑒𝑔𝐿 − [

𝑀𝑅
𝐻𝑅
] �̇�𝑙𝑒𝑔𝑅) .             (4.27) 

 

Equation (4.25) and (4.26) are useful in generating robot hopping and running gait. 

 

Figure 4.11. Momentum and motion reference coordinate. 



 

 99 

4.4 Motion Path and Trajectory Generation 

In this section, the motion path and trajectory generation algorithm for joint position, feet movement 

and ZMP/CoM trajectory will be discussed in detail.  

 

4.4.1 Joint Trajectory Generation with Interpolation Method 

The robot’s joint trajectory is generated using seven degrees of polynomial to ensure that all the 

joints start and stop at the same time. The position, velocity, acceleration and jerk parameters are all 

zero when it reaches the desired angular position. For example, to move the angular position of a 

joint with a zero jerk start-stop path for 𝑞(𝑡0) = 10
0 and 𝑞(𝑡𝑓) = 45

0 in T=1s, the unknown 

coefficient 𝑞0, 𝑎1,𝑎2, … 𝑎7 can be found with the following set of polynomial equations by setting 

the eight boundary conditions. The motion trajectories are depicted in Figure 4.12. For 

(4.28) 

and boundary conditions 

(4.28) 

The polynomial functions, with u= 
𝑡

𝑇
 , yields 

𝑞(𝑡) = 𝑎0 + 𝑎1𝑢 + 𝑎2𝑢
2 + 𝑎3𝑢

3 + 𝑎4𝑢
4 + 𝑎5𝑢

5 + 𝑎6𝑢
6 + 𝑎7𝑢

7 , 

�̇�(𝑡) = 𝑎1 + 2𝑎2𝑢 + 3𝑎3𝑢
2 + 4𝑎4𝑢

3 + 5𝑎5𝑢
4 + 6𝑎6𝑢

5 + 7𝑎7𝑢
6 , 

�̈�(𝑡) = 2𝑎2 + 6𝑎3𝑢 + 12𝑎4𝑢
2 + 20𝑎5𝑢

3 + 30𝑎6𝑢
4 + 42𝑎7𝑢

5 ,      

𝑞(𝑡) = 6𝑎3 + 24𝑎4𝑢 + 60𝑎5𝑢
2 + 120𝑎6𝑢

3 + 210𝑎7𝑢
4 .                                 (4.29) 

 

The coefficients (𝑎0 to 𝑎7) with 𝑡0 = 0 and 𝑡𝑓 = 1 , can be solved with the following matrix 

[
 
 
 
 
 
 
 
1 0 0
0 1 0
0 0 2

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
1 1 1
0 1 2

6 0 0
1 1 1
3 4 5

0 0
1 1
6 7

0 0 2
0 0 0

6 12 20
6 24 60

30 42
120 210]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑞0 = 10
0
0
0

𝑞𝑓 = 45

0
0
0 ]

 
 
 
 
 
 
 

 .                               (4.30) 
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Figure 4.12. Interpolation and trajectory pattern simulation.   

 

4.4.2 Foot Trajectory 

The walking gait as illustrated in Figure 4.13, can be seen as a periodic stance of the swing of 

both the legs. One swing makes up a complete cycle of walking. Figure 4.14 shows The basic 

parameters for a biped walking are step length 𝑆, pelvis height 𝑍, foot lifting height 𝐻 and frontal-

shift 𝐹. 

 

 

Figure 4.13. Typical robot walking cycle. 
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Figure 4.14.  Typical robot walking gait. 

 

4.4.2.1 Foot Trajectory for Walking on Flat Ground 

The swing foot trajectory of a robot walking on flat ground may be modelled by a simple cycloid 

function. The equations that describe the parabolic trajectory of the swing foot are given by  

 

𝑥(𝑡) = −𝑆 𝑐𝑜𝑠(𝜔𝑡),         

𝑍(𝑡) =
𝐻

2
[1 − cos(2𝜔𝑡)],             𝑓𝑜𝑟 0 ≤ 𝑡 ≤  𝑇 .          (4.31) 

 

Where 𝑆 is the stride, 𝐻 is the maximum foot height, 𝑇 is the one step period and the stride frequency 

is 𝜔 =
𝜋

𝑇
. These functions are commonly used to generate a robot swing foot trajectory. A sample 

plot of  𝑇 = 1𝑠, 𝑆 = 0.2𝑚,𝐻 = 0.1𝑚 is shown in Figure 4.15.    
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Figure 4.15. Trajectory profile with cycloid function. 

 

4.4.2.2 Foot Trajectory for Walking on Uneven Ground 

The swing foot trajectory of a robot walking on uneven surface may not be realised by using 

simple cycloid functions, especially if the robot is climbing stairs or stepping over an obstacle. 

Under such situations, we may need to define a path trajectory with intermediate points, and the 

seven degrees of polynomial with one intermediate point can be realised by setting the eight 

boundary conditions with 

𝑞(𝑡) = 𝑎0 + 𝑎1𝑢 + 𝑎2𝑢
2 + 𝑎3𝑢

3 + 𝑎4𝑢
4 + 𝑎5𝑢

5 + 𝑎6𝑢
6 + 𝑎7𝑢

7 |𝑢=𝑡
𝑇
 , 

(4.32) 

 

For example, for time T from 0 to 1sec, to generate a swing profile with the following parameters:  

axis  start point/time midpoint/time end point/time 

x-axis -0.1m, t=0s 0m, t=0.5s 0.1m, t=1s 

z-axis 0m, t=0s 0.15m, t=0.3s 0m, t=1s 
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for x-axis, to determine the coefficients (𝑎0 to 𝑎7) with 𝑡0 = 0, 𝑡1 = 0.5 and 𝑡2 = 1, the 

coefficients matrix is  

[
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0.51 0.52 0.53 0.54 0.55 0.56 0.57

1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

0 0 2 6 12 20 30 42
0 0 0 6 24 60 120 210 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
−0.1
0
0
0
0.1
0
0
0 ]
 
 
 
 
 
 
 

 ,                       (4.33) 

 

and for z-axis, the coefficients matrix is 

[
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0.31 0.32 0.33 0.34 0.35 0.36 0.37

1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

0 0 2 6 12 20 30 42
0 0 0 6 24 60 120 210 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
0
0.15
0
0
0
0 ]
 
 
 
 
 
 
 

  .                     (4.34) 

 

The trajectory profile is as shown in Figure 4.16. 

 

Figure 4.16. The trajectory profile of a seven degree polynomial function. 
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4.4.3 ZMP Trajectory for Robot with Flat-foot or Toe-foot Walking 

Referring to Table 4.2. There are various types of ZMP trajectories. For flat-foot walking, ZMP-

A trajectory is suitable. But for fast walking, hopping forward or running, either ZMP-B, ZMP-C 

or ZMP-D trajectory is more suitable to produce a longer strike.  

 

Table 4.2. ZMP trajectory and profile.  

Different type of ZMP trajectory  Sagittal Plane (x-axis) ZMP profile 

ZMP-A trajectory:  

The ZMP is always position at the 

center of the stance foot (Leg-L) support 

polygon during the SSP and switches to 

the center point of the foot support 

convex polygon (SCP) of the next 

support foot (Leg-R) during the double 

support phase (DSP). 

 

 

 

ZMP-B trajectory:  

At the start of SSP, the ZMP is 

positioned at the heel of the foot support 

polygon (Leg-L) and shift linearly to the 

front edge to the toe of the SCP during 

SSP, and switches to the center point of 

the foot support polygon of the next 

support foot (Leg-R) during the DSP. 

  

ZMP-C trajectory:  

Robot with feet-toe, it is more efficient 

in walking and it is able to achieve 

longer strike. At the start of SSP, the 

ZMP is positioned at the heel of the 

stance feet (Leg-L) SCP, during the 

SSP, it shift linearly to the front edge of 

the sole support, and switches to the 

center point of the toe support convex 

hull, and switches to the heel of the foot 

SCP of the next support foot (Leg-R) 

during the DSP. 
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ZMP-D trajectory:  

Suitable for hopping, fast walking or 

even running. At the start of SSP, the 

ZMP is positioned at the heel of the 

stance foot (Leg-L) SCP, during the 

SSP, the ZMP shifts linearly to the front 

edge of the sole, and subsequently 

switches to the back edge of the toe SCP 

and shifts linearly to the front tip edge of 

the toe, and start to rotate around the 

toe-tip, before switching over to the heel 

of the foot SCP of the next support 

foot(Leg-R) during the DSP. 

 

 

 

 

4.4.4 ZMP Pattern Generation for Different Ground Condition   

The ZMP of the sagittal and frontal direction can be generated with the following generic set of 

algorithms [Y. Choi, D. Kim et al., 2007], [T.H.S. Li, Y.T. Su et al, 2012] for walking on 

different terrains:  

 

 (4.34) 

 

Where 𝑛 is number of step, 𝑆𝑥 is the step size , 𝐸, 𝐸∗, 𝐶∗, are some fine-tuning parameters to 

change the shape of the ZMP trajectory waveform. The trajectory parameters are as depicted in 

Figure 4.17 and the generic trajectory is as shown Figure 4.18. 
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Figure 4.17. ZMP trajectory parameters. 

 

 

Figure 4.18. Generic ZMP trajectory. 
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4.5 Chapter Summary 

In this chapter, the kinematics and dynamics model of our TPinokio robot is presented and 

discussed. Iterative method is adopted to solve the inverse kinematics problems because the 

advantage towards the close-form method is that we can add extra links. For example, adding 

extra link to the fingers, eyes or toe to increase the DoF of our robot can be done without too 

much modification to the forward and inverse kinematic equations. The accuracy of the forward 

and inverse kinematics is verified through simulations. A simple inverted pendulum dynamic 

model is as effective as a multi-mass or whole body dynamic model. Seven degrees polynomial 

is adopted for path trajectory planning to ensure that the all the joints start and stop at the same 

time. Furthermore, the position, velocity, acceleration and jerk components are all zero when the 

trajectory reaches the desired angular position and this will improve the walking stability. A 

generic ZMP generating equation is also developed and by tuning the waveform parameters, this 

ZMP trajectory can be easily modified to different shape for walking on different terrains.  
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Chapter 5  

Control and Walking Pattern 

Generation 

 

An admissible and optimal trajectory reference signal must first be generated before one can 

implement a controller for a bipedal robot to be stable in walking. In this chapter, we will 

consider the control issues of the bipedal robot TPinokio, its kinematics and dynamics, its gait 

synthesis and implementation. The goal is to generate efficient walking pattern for the robot to 

walk stably either in static or dynamic-mode on flat surface, step over obstacle, ascending and 

descending stairs. Control of bipedal walking can be classified into two main tasks: 

 To control the position of the bipedal robot CoM and ZMP position and its trajectory to 

maintain a stable walking posture. This task can be achieved by various tracking 

algorithms; and  

 To control the position, orientation and motion trajectory of the moving legs and body to 

produce minimum-jerk walking posture.  

This chapter presents the proposed motion control algorithms and description of the walking gait 

generation methods.  

 

5.1 Augmented Model Predictive Control  

The use of the Augmented Model Predictive Control (AMPC) technique to control TPinokio is 

motivated by its capability in handling the control or the state variables constraints. The three 

main terms in the AMPC are prediction horizon, control horizon and moving horizon window 

respectively. This approach is suitable in designing a stable walking gait pattern and solving the 

control problems of a bipedal that is subjected to disturbances and constraints in an unstructured 
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environment. The human walking behavior provides some observation guide for our controller 

design: 

 Perfect joint trajectory tracking from step-to-step is not necessary. 

 Adapting to its environment and able to avoid obstacle. 

 Walking from point to point with minimum energy consumption. 

 Have good capability of anticipation and prediction during locomotion. 

These behaviors fit nicely into the AMPC approach which minimizes the robot body CoM jerks  

(𝑥𝑐𝑜𝑚 , 𝑦𝑐𝑜𝑚) , while tracking its ZMP position (𝑥𝑧𝑚𝑝 , 𝑦𝑧𝑚𝑝) as near as possible to the desire 

trajectory. For example, tracking the reference input from the vision system or the path planning 

controller. The control strategy is illustrated in Figure 5.1, the optimized gaits and the constraints 

performance criteria were introduced to define the gait pattern generation as an optimization 

problem with constrains. The optimization computes the predicted vector 𝑈(𝑘) over the control 

horizon, only the first component 𝑢(𝑘 + 1) is feedback to the robot input to ensure a smoother 

motion in an obstacle-filled environment. Then the optimization process restarts. 

 

 

 

Figure 5.1. Typical AMPC set up. 

  



 

 110 

5.1.1 Linear Inverted Pendulum Model   

5.1.1.1 Discrete LIPM model  

As discussed in Chapter 4, the 3D-LIPM model ZMP equation for the sagittal (xz-plane) and the 

frontal (yz-plane) can be expressed as   

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 −
𝑍𝑐𝑜𝑚

𝑔
�̈�𝑐𝑜𝑚             ,       𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 −

𝑍𝑐𝑜𝑚

𝑔
�̈�𝑐𝑜𝑚 .                      (5.1) 

Note that the above equations are decoupled, and they can be expressed in 2D-LIPM and 

analyzed independently. Let now define a new variable 𝑢 (system jerk) in the following form: 

𝑢𝑥   =
𝑑

𝑑𝑡
�̈�𝑐𝑜𝑚 = 𝑥𝑐𝑜𝑚                      ,                     𝑢𝑦 = 

𝑑

𝑑𝑡
�̈�𝑐𝑜𝑚 = 𝑦𝑐𝑜𝑚 .                 (5.2) 

 

Combining equation (5.1) and (5.2), the ZMP equation can be re-arranged into the following 

state-space form:  

 

[

�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚
𝑥𝑐𝑜𝑚

] = [
0 1 0
0 0 1
0 0 0

] [

𝑥𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

] + [
0
0
1
] 𝑢𝑥      ,      [

�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚
𝑦𝑐𝑜𝑚

] = [
0 1 0
0 0 1
0 0 0

] [

𝑦𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

] + [
0
0
1
] 𝑢𝑦 , 

(5.3) 

             𝑥𝑧𝑚𝑝 = [1 0 −
𝑧𝑐𝑜𝑚

𝑔
] [

𝑥𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

]             ,        𝑦𝑧𝑚𝑝 = [1 0 −
𝑧𝑐𝑜𝑚

𝑔
] [

𝑦𝑐𝑜𝑚
�̇�𝑐𝑜𝑚
�̈�𝑐𝑜𝑚

] .      

 

The set of equations in (5.2) and (5.3) can be applied to synthesize the dynamic characteristic of 

the 3D-LIPM system, which is a reasonable approximation as compared to other more 

complicated approaches. In the subsequent sections, the LIPM model will be analyzed in the xz-

plane (sagittal plane). The same methodologies can be applied to the yz-plane (frontal plane). 

The above equations (5.3) are discretized with constant time T, and 𝑡 = 𝑘𝑇 for  𝑘 = 1,2,3….The 

discrete form of the xz-plane can be derived as:  

   

 



 

 111 

𝑥𝑧𝑚𝑝(𝑘) = [1 0 −
𝑧𝑐𝑜𝑚

𝑔
] [

𝑥𝑐𝑜𝑚(𝑘)

�̇�𝑐𝑜𝑚(𝑘)

�̈�𝑐𝑜𝑚(𝑘)
] .                                              (5.4) 

5.1.1.2 Characteristic of the Discrete LIMP Model  

The root-locus plot of the continuous time LIPM, referring to equation (5.3), is as depicted in 

Figure 5.2, showing an undesired zero at the RHP. The discrete time poles-zeros plot, referring 

to equation (5.4), is as depicted in Figure 5.3, showing the undesired zero appears outside the 

unit circle. As such, we can conclude that the LIPM model is a non-minimum phase (NMP) 

system. This undesired zero will produce a reverse action undershoot transient response [B.H. 

Jesse, S.B. Dennis et al., 2007] to a step input. Care should be taken to address this initial ‘water-

bed’ effect, as this may cause the bipedal robot to lose balance and fall. 

 

Figure 5.2. Continuous time poles and zeros plot. 

 

Figure 5.3. Discrete time poles and zeros plot. 
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5.1.2 Augmented Model 

Augmented Model Predictive Control (AMPC) state-space model tracking system design will be 

presented in this section. The solutions is recursive, as such it is suitable for implementation with 

microcontrollers that have limited computing power and memory storage. In addition, our 

approach does not need to solve Riccati equation (comparison with most of the optimization 

methods), therefore reducing the complexity of the solving process.  

 

The proposed AMPC model is an augmented state-space model with an embedded integrator [L. 

Wang, 2009]. The CoM is represented in the state variables. The set of equations (5.4) can be re-

written into the standard state-space form: 

(5.5) 

Where 𝑥𝐷 is the discrete-time state variable of the CoM, 𝑢 is the discrete-time control input 

variable of the system jerk, and 𝑦 is the discrete-time ZMP output. To augment equation (5.5), 

by taking a different operation on both sides of the equation, we obtain 

(5.6) 

The difference in the state variable and the difference in the control variable are given by  

(5.7) 

Combining equation (5.5),(5.6) and (5.7),  we obtain the augmented state-space model:  

(5.8) 
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where 𝑂𝐷 = [0 0 0] is the dimension of the state variable, and the triplet (𝐴, 𝐵, 𝐶) is the 

augmented model. 

 

5.1.3 Prediction of the Robot CoM (the state) and the ZMP (the output variable) 

The control input (system jerk) is denoted as  

 

(5.9) 

where 𝑁𝑐 is the control horizon and 𝑁𝑝 is the length of the prediction horizon. The future CoM 

state variables are predicted for 𝑁𝑝 samples. Let denote the future CoM state variables as 

 

(5.10) 

 

Note that  𝑥(𝑘 + 𝑚|𝑘) is the predicted future state variable at (𝑘 + 𝑚) with the given current 

system state variables 𝑥(𝑘). Normally, we set the control horizon 𝑁𝑐  to  𝑁𝑐 ≤ 𝑁𝑝.  

The stage variables can be computed recursively as follows: 

 

 

     

Similarly, all the predicted output values are based on current information of the state value 𝑥(𝑘) 

and the future predicted control values ∆𝑢(𝑘 + 𝑗), where 𝑗 = 0,1,2, … .𝑁𝑐 − 1, can be arranged 

into the following vectors form:  

 

(5.11) 
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The output variables are computed recursively as:  

 

The dimensions of 𝑌 and 𝑈 are 𝑁𝑝 and 𝑁𝑐 respectively. We can arrange the parameters into the 

following matrix form: 

Y = 𝐹𝑥(𝑘) + Φ∆𝑈 ,                                                 (5.12) 

where 

𝐹 =  

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

 ,

 

 and  

 

 

5.1.4 ZMP Tracking and Optimization 

This optimization process is then translated to find an optimal control vector U such that the 

error between the input reference ZMP set-point trajectory and the CoM output trajectory is 

minimized. The vector that contains the set-point data information is written as 

𝑅𝑠 = [1 1. . . 1]𝑇⏞        

𝑁𝑝

 𝑟(𝑘 + 𝑡𝑎) = 𝑉𝑠𝑟(𝑘 + 𝑡𝑎) ,                           (5.13) 

 

where 𝑉𝑠 = [1 1. . . 1]𝑇⏞        

𝑁𝑝

  and 𝑡𝑎 is the adjustable feed forward time-shift constant respectively. 

The cost function 𝐽 is defined as  
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J = (𝑅𝑠 − 𝑌)
𝑇(𝑅𝑠 − 𝑌) + Δ𝑈

𝑇�̅�∆𝑈 ,                                           (5.14) 

 

where the first term is linked to the objective of minimizing the errors between the predicted 

ZMP output and the reference ZMP set point, and the second term reflects the consideration 

given to the rate of change in the system jerk (∆𝑈) when the objective function J is made as 

small as possible.  

 

The diagonal matrix 𝑅 = 𝑟𝑤𝐼𝑁𝑐×𝑁𝑐(𝑟𝑤 ≥ 0) is used as a tuning parameter to improve the closed-

loop performance. For the case where 𝑟𝑤 = 0, the goal would be solely to make the ZMP error 

(𝑅𝑠 − 𝑌)
𝑇(𝑅𝑠 − 𝑌) as small as possible. For the case of a large 𝑟𝑤, the cost function is 

interpreted as it is carefully consider how large the rate of change in the system jerk ∆𝑈 might be 

and cautiously reduce the ZMP error. To determine the optimal ∆𝑈 which minimizes J, we 

substitute equation (5.12) into (5.14) to obtain    

 

J = (𝑅𝑠 − 𝐹𝑥(𝑘))
𝑇
(𝑅𝑠 − 𝐹𝑥(𝑘)) − 2Δ𝑈

𝑇Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘)) + ∆𝑈
𝑇(Φ𝑇Φ+ �̅�)Δ𝑈 . 

       (5.15) 

The minimum J is computed by  

𝜕𝐽

𝜕∆𝑈
= −2Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘)) + 2(Φ

𝑇Φ+ �̅�)∆U = 0 .                         (5.16)
 

By re-arranging equation (5.16), the optimal solution can be determined as 

 

ΔU = (Φ𝑇Φ+ �̅�)−1Φ𝑇(𝑉𝑠𝑟(𝑘 + 𝑡𝑎) − 𝐹𝑥(𝑘)) .                           (5.17) 

 

We note that the optimal solution of the control signal is linked to the ZMP reference set-point 

signal 𝑟(𝑘 + 𝑡𝑎) and the state variable CoM by equation (5.17). Applying the AMPC concept, 

which is only the first value of the control parameters ΔU at time  𝑘  is taken to be the 

subsequent control input variable, from equation (5.17) we obtain  

Δu(𝑘 ) = [1 0. . . 0]⏞        
𝑁𝑐

(𝛷𝑇𝛷 + �̅�)−1𝛷𝑇(𝑉𝑠𝑟(𝑘 + 𝑡𝑎) − 𝐹𝑥(𝑘)) 

= 𝐾𝑦𝑟(𝑘 + 𝑡𝑎) − 𝐾𝑚𝑝𝑐𝑥(𝑘) ,                                      
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(5.18) 

where 𝐾𝑦 and 𝐾𝑚𝑝𝑐 is the first element of  (𝛷𝑇𝛷 + �̅�)−1𝛷𝑇𝑉𝑠 and first row of (𝛷𝑇𝛷 +

�̅�)−1𝛷𝑇𝐹 respectively. With 𝐾𝑚𝑝𝑐 represent the state feedback control gain, equation (5.18) 

resemble a linear time-invariant system. As such, for the AMPC state variables expression  

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵Δu(k), and substituting (5.18) into the augmented system equation, the 

closed-loop system can be determined as  

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) − 𝐵𝐾𝑚𝑝𝑐𝑥(𝑘) + 𝐵𝐾𝑦𝑟(𝑘 + 𝑡𝑎) = (𝐴 − 𝐵𝐾𝑚𝑝𝑐)𝑥(𝑘) + 𝐵𝐾𝑦𝑟(𝑘 + 𝑡𝑎).       

(5.19) 

We observe that 𝐾𝑦 is also the last element of 𝐾𝑚𝑝𝑐, and the states  𝑥(𝑘𝑖) = [Δ𝑥𝐷(𝑘)
𝑇 𝑦(𝑘)]𝑇, 

and 𝐾𝑚𝑝𝑐 = [𝐾𝑥  𝐾𝑦], with 𝐾𝑥 and 𝐾𝑦 being the gain variables of Δ𝑥𝐷(𝑘) and  𝑦(𝑘) respectively. 

Figure 5.4 shows the predictive system closed-loop block diagram, where 𝑧−1 and 
1

1−𝑧−1
 denotes 

the backward shift operator and discrete-time integrator respectively. The closed-loop 

characteristic equation is  

𝑑𝑒𝑡 (𝜆𝐼 − (𝐴 − 𝐵𝐾𝑚𝑝𝑐)) = 0 .                                             (5.20) 

 

 

Figure 5.4. Block diagram of a discrete time AMPC. 
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The AMPC p-z plot, as depicted in Figure 5.5, indicated that there is a zero at location z=1.02, so 

the undershoot transient waterbed effect is expected.  

 

Figure 5.5. P-Z plot of a discrete time LIPM-AMPC system. 

 

5.1.5 Simulation 

Referring to Figure 5.6, the simulation shows good tracking of the desired ZMP and CoM 

trajectory. The robot parameters are: T=5ms, Zcom=0.55m. The AMPC parameters are: 𝑁𝑐 =

100,𝑁𝑝 = 300, 𝑡𝑎 = 80, 𝑟𝑤 = 10
−5 . As discussed in section 5.1.4, the undershoot transient 

response is expected because of the zero effect.  Although AMPC exhibits an initial undershoot, 

which is due to the inherent non-minimum phase (NMP) characteristics of IPM, but the CoM 

output (the desired signal, in red) is smooth and is also following closely to the reference ZMP 

(blue waveform) trajectory. The algorithm is still very effective, and the jerk in both the X and Y 

direction is minimized to zero as shown in Figure 5.7. 
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Figure 5.6. Augmented MPC model tracking trajectory, (a) y-axis, (b) x-axis, (c) xy plane. 

 

 

Figure 5.7. AMPC system jerk is reduced to zero in both (a) x-axis and (b) y-axis direction. 
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5.1.6 Comparison of AMPC and Preview Control Method 

Referring to Figure 5.8, with a closer examination of the CoM trajectory produced using the 

AMPC tracking, it can be seen that the CoM curve (in red) moves slowly toward the reference 

ZMP curve (in blue). This can be interpreted as the controller trying to reduce the jerk and 

impact force during swing foot landing and cautiously reduce the ZMP error. As a result, the 

weight of CoM transfers from the supporting foot to the landing foot (new supporting foot) 

during the double support phase (DSP) is slow and gentle. In comparison with the preview 

control technique [S. Kajita, F. Kahehiro et al., 2003],[Thomas B. Sheridan, 1966], which 

produces a symmetrical sinusoidal waveform (in green), the AMPC algorithm produces a 

truncated sinusoidal trajectory during swing foot landing due to its ‘soft landing, fast take off’ 

characteristics. The other advantages of using the AMPC model is that the optimization process 

does not need to solve the Riccati equation and the optimization window can be easily adjusted 

to fine-tune the system response. Since AMPC uses the recursive iteration method, with 

continuing improvement in computer hardware and software architecture, this in turn reduces 

system-processing time and therefore, it is possible to implement it in real-time and in those low-

end embedded systems which have limited computing power and memory storage. 

 

Figure 5.8. Comparison of MPC and Preview control, (a)y-axis, (b)x-axis. 
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The simulation of the biped dynamic walking is depicted in Figure 5.9 and its joint angle using 

the AMPC method is depicted in Figure 5.10. 

 

Figure 5.9. Robot simulation model. 

 

The required joint torque can be calculated using Euler-Lagrange equation of motion with the 

above simulation values of the joint angular position, velocity and acceleration. Please refer to 

Appendix A for details. 

 

Another approach to reduce the water-bed effect is to design a feed forward controller using 

pole-zero cancelling technique, where the NMP zero is approximated with Taylor series 

expansion to achieve a less overshoot trajectory tracking. This method will be discussed in the 

following sections. 
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Figure 5.10. Robot joint parameters. 
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5.1.7 AMPC-PZC Control Method 

The difficulties to control non-minimum phase (NMP) systems’ undershoot effect can be 

reduced by using the pole zero cancellation (PZC) techniques, the details approach can be found 

in literatures [Masayoshi Tomizuka, 1987], [Eric G., Massayoshi T., 1994]. Figure 5.11 illustrate 

a schematic diagram of the proposed AMPC-PZC controller. The PZC feed forward controller is 

defined as   

(5.21) 

where 𝐴(𝑧) are the system poles,  𝐵−(𝑧) is  the polynomial of the system stable zeros,  𝐵+(𝑧) is  

the polynomial of unstable zeros, and 𝐺𝑐 is the dc gain. 

 

 

Figure 5.11. AMPC with PZC controller block diagram. 

 

As depicted in Figure 5.11, the closed-loop system of the single mass inverted pendulum with 

AMPC is 

(5.22) 
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where 𝑁𝑚𝑝(𝑧) , 𝑁𝑛𝑚𝑝(𝑧) are the minimum and non-minimum phase parts respectively, 𝐺𝑝 is the 

constant gain, and 𝐷(𝑧) is the plant denominator polynomials. The feed-forward PZC tracking 

controller can be derived from equation (5.21) and (5.22): 

 

(5.23) 

 

and the NMP zero( 
1

(𝑧−1.021)
 )is approximated by Taylor series expansion 

1

𝑧 − 𝑧1
= −

1

𝑧1
−
1

𝑧1
2 𝑧 −

1

𝑧1
3 𝑧

2 +⋯         𝑓𝑜𝑟  |𝑧| < |𝑧1 = 1.021| . 

The simulation waveform is shown in Figure 5.12 and the control signal is shown in Figure 5.13 

respectively. This method produces a higher spike in the control signal.  

 

Figure 5.12. AMPC-PZC waveform, (a) x-axis, (b) y-axis, (c) xy-axis. 
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Figure 5.13. AMPC-PZC control signal, (a) y-axis, (b) x-axis. 

 

5.1.8 Double Mass Inverted Pendulum with Model Predictive Control 

A robot with torso can be modeled with the double inverted pendulum method. The challenge 

now will be designing a controller to control the motion of two point masses. As explained in 

chapter 4, the state-space of a double mass inverted pendulum model (DMIPM) can be written 

the form   

(5.24) 

(5.25) 

This system has double control input [𝑥 𝜃]
𝑇 variables, so note that the B matrix now has two 

columns. The cost function can be derived by using the same approach from section (5.1.2). The 
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simulation is performed with the following parameters: L=0.273m, z1=0.55m, m1=35kg, 

m2=27kg, θ=0.15
o
, g=9.81m/s

2
. In Chapter 4, we shows that the DMIPM does not have a zero at 

the RHP, as such, there is no undershoot or water-bed effect at the output ZMP waveform and 

this model also managed to track the reference ZMP waveform with good accuracy. Note that the 

simulation is done piece-wise with single step response. As illustrated in Figure 5.14, the angle θ 

of the upper pendulum need to reset to initial value with every support step switch over during 

the DSP. This method is suitable to control robot walking on stairs or stepping over obstacle that 

require piecewise motion. The simulation waveform is depicted in Figure 5.15. 

 

Figure 5.14. Piece-wise single step response. 

 

Figure 5.15. AMPC with DMIPM waveform, the black box in (c) represent the robot foot step. 
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5.2 Robot with Passive Toe-foot 

In this section we study the advantage of a robot having passive toe-foot.  

5.2.1 Passive Toe  

Figure 5.16 shows a typical toe-foot design. With the combined actions of the CoM’s natural 

oscillation frequency and passive toe, we can improve the robot walking efficiency and achieve a 

longer step strike. The TPinokio robot is designed with a passive spring-toe.  

 

Figure 5.16. TPinokio robot with passive foot-toe design. 

 

5.2.2 Modified Toe-foot gait  

A foot with toe will reduce the spark in maximum speed of the knee joint and can produce more 

natural walking posture. Furthermore, the walking speed as well as the maximum step-length can 

also be increased. As illustrated in Figure 5.17(a), in sagittal plane, the ZMP trajectory of the toe-

feet is different from the flat-feet trajectory and it now has three phases: Under-Actuated-Phase 

(UAP), Single-Support-Phase (SSP) and Double-Support-Phase (DSP). The modified trajectory 

in sagittal plane is as shown in Figure 5.17(b), starting from the SSP, the support feet ZMP shift 

linearly from the heel to the toe, and changed over to the new support feet to the end of the DSP. 
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Figure 5.17. Modified toe-foot walking gait and its ZMP position in sagittal plane. 

 

The advantage of having a toe-feet is illustrated in Figure 5.18. With a flat-foot and CoM height 

of  0.55m, the TPinokio robot can reach a maximum step size of 0.45m and a walking pace of 

1.5s/step, which is around 1.1km/h. In the case where there is a toe-feet, as shown in Figure 

5.18(b), the maximum step size is 0.6m, achieving a walking speed of around 1.4km/h, an 

increase of around 27% in walking speed. 

 

Figure 5.18. (a)Flat-feet step length. (b) Toe-feet step length. 

(a) (b) 
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Referring to Figure 5.19, another advantage of the toe-foot design is that the robot can perform 

stretch walking with toe-off and heel-strike motion. The normal value for a human walking with 

toe-off and heel-strike is 30
o
 and 26

o
 respectively.  

 

Figure 5.19. Toe-off and heel-strike walking trajectory in sagittal plane. 

 

5.3 Feasibility Study of Robot Walking on Different Surface 

In this section, we conduct a feasibility study of the performance of the TPinokio robot with 

considering the kinematics structure, the limitation of the robot legs and the geometry of the 

obstacle [G.Q. Zhang, M. Xie et al., 2009]. These kinematics limitations and characteristics can 

then either be stored or retrieved for future motion planning. 

 

5.3.1 Walking On Slope 

The IPM concept is used to model a bipedal walking on slope. Recall from Chapter 4, the ZMP-

CoM equations (Sagittal plane, xz-axis) of a robot walking on flat surface with constraint in the 

z-plane are: 

𝑘𝑦 = 0 , 

𝑧 = 𝑧𝑐 + 𝑘𝑥𝑥 + 𝑘𝑦𝑦 , 

𝑚(�̈�𝑐𝑜𝑚 + 𝑔)(𝑥𝑐𝑜𝑚 − 𝑥𝑧𝑚𝑝) = 𝑚(�̈�𝑚)(𝑧𝑐𝑜𝑚 − 𝑧𝑧𝑚𝑝) .                   (5.26) 

 

Referring to Figure 5.20, for walking on either up slope or down slope, the constraint z-plane is 

now a slope with angle θ, and the constraint parameters are: 

For walking up a xz-plane slope:  𝑘𝑥 = tan𝜃  , 𝑘𝑦 = 0 , 𝑧 = 𝑧𝑐 + 𝑘𝑥𝑥 .  

For walking down a xz-plane slope:  𝑘𝑥 = −tan𝜃 , 𝑘𝑦 = 0 , 𝑧 = 𝑧𝑐 − 𝑥 tan 𝜃 .  
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Figure 5.20. Inverted pendulum walking on slope model. 

 

5.3.1.1 Walking Up Slope  

In this section we derive the equations for a robot walking down slope as illustrated in above 

Figure 5.20(a). The constraint parameters are:  

𝑘𝑥 = tan𝜃 , 𝑘𝑦 = 0 , 𝑧 = 𝑧𝑐 + 𝑘𝑥𝑥  .                               (5.27) 

 

With  𝑧𝑧𝑚𝑝 = 𝑘𝑥𝑥𝑧𝑚𝑝  ,  �̈�𝑐𝑜𝑚 = 𝑘𝑥�̈�𝑐𝑜𝑚 , from equation (5.26) we obtain 

𝑚(�̈�𝑐𝑜𝑚 + 𝑔)(𝑥𝑐𝑜𝑚 − 𝑥𝑧𝑚𝑝) = 𝑚(�̈�𝑐𝑜𝑚)(𝑧𝑐𝑜𝑚 − 𝑧𝑧𝑚𝑝) , 

(𝑘𝑥�̈�𝑐𝑜𝑚 + 𝑔)(𝑥𝑐𝑜𝑚 − 𝑥𝑧𝑚𝑝) = �̈�𝑐𝑜𝑚(𝑧𝑐 + 𝑘𝑥𝑥𝑐𝑜𝑚 − 𝑘𝑥𝑥𝑧𝑚𝑝) .                (5.28) 

 

Simplify equation (5.28), the dynamic equation for xz-plane is  

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 − (
𝑧𝑐

𝑔
) �̈�𝑐𝑜𝑚 .                                             (5.29) 

Similarly, the yz-plane dynamic equation is  

𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 − (
𝑧𝑐

𝑔
) �̈�𝑐𝑜𝑚 .                                             (5.30) 

Note that the walking up the slope ZMP equations (5.29) and (5.30) is the same as the ZMP 

equations for walking on flat surface. Therefore, the same CoM/ZMP trajectory tracking 

technique used for the flat ground can also be implemented for walking up a slope. Also note that 

now the 𝑧𝑐𝑜𝑚 is not a constant with respect to the horizontal ground, but it is a constant with 

respect to the slope and is now a function of the robot pelvis height (𝑧𝑐) and the slope angle (𝜃). 
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As illustrated in Figure 5.21, for stable up slope walking, we need to adjust the leg ankle’s pitch 

angle to 𝜃𝑎𝑛𝑘𝑙𝑒_𝑝𝑖𝑡𝑐ℎ = 𝜃𝑠𝑙𝑜𝑝𝑒 , so that the robot foot is parallel to the slope when walking up the 

slope. The simulation results of the robot joints’ trajectory is depicted in Figure 5.22. 

 

 

Figure 5.21. Posture of robot walking on slope. 

 

 

Figure 5.22.  Robot walking up slope joints’ trajectory, (a) Left leg, (b) Right leg.  
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5.3.1.2 Walking Down Slope  

Referring to previous Figure 5.20(b), the constraint plane is a now a negative slope with angle 𝜃, 

and the parameters are: 

𝑘𝑥 = − tan𝜃   , 𝑘𝑦 = 0   , 𝑧 = 𝑧𝑐 − 𝑥 tan𝜃 .                       (5.31) 

With  𝑧𝑧𝑚𝑝 = −𝑥𝑧𝑚𝑝 tan 𝜃    , �̈�𝑐𝑜𝑚 = −�̈�𝑐𝑜𝑚 tan 𝜃 , from the ZMP equation (5.26), we obtain 

 (𝑘𝑥�̈�𝑐𝑜𝑚 + 𝑔)(𝑥𝑐𝑜𝑚 − 𝑥𝑧𝑚𝑝) = �̈�𝑐𝑜𝑚(𝑧𝑐 + 𝑘𝑥𝑥𝑐𝑜𝑚 − 𝑘𝑥𝑥𝑧𝑚𝑝).                    (5.32) 

 

Simplify the above equation (5.32), the dynamic equations for the xz-plane and yz-plane are as 

follows: 

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 − (
𝑧𝑐
𝑔
) �̈�𝑐𝑜𝑚 , 

𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 − (
𝑧𝑐

𝑔
) �̈�𝑐𝑜𝑚 .                                               (5.33) 

 

Note that the ZMP-CoM equation is the same as on walking on flat ground. The only required 

modification is to adjust the ankle pitch angle to 𝜃𝑎𝑛𝑘𝑙𝑒_𝑝𝑖𝑡𝑐ℎ = −𝜃𝑠𝑙𝑜𝑝𝑒  . So that the robot foot 

is parallel to the slope when walking down the slope.  

 

5.3.2 Step Over Obstacle in Statically Balancing Mode 

To control a bipedal robot to step over an obstacle without losing balance is another challenging 

task. The general procedure is to first define the constraints on the leg joints limited by its legs’ 

mechanical structure and kinematics, follow by formulating the balance and collision-free 

constraints, and finally derive the mathematical models. To do this, we adopted the statically 

balancing walking strategy with the CoM of the robot always remains in the stance feet support 

convex polygon when one leg leave the ground. The CoM will only moves when both of the 

robot foot is on the ground during DSP. There are two basic constraints, the balance constraint 

and the collision free constraint must be observed in this stepping over obstacle movement. The 

following assumptions are made to simplify our analysis: 

 A typical obstacle is a rectangular box shape. The minimal rectangular box is used to 

approximate a nonrectangular obstacle. 
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 To achieve balance constraint, we only consider static balancing and kinematics 

constraint. 

 To achieve collision free constraint, the feet move in parallel to the sagittal plane, the 

frontal distance between the two legs remain constant and no yaw movement. 

 

5.3.2.1 Geometrical Method to Determine the Obstacle Size 

A geometrical method to determine the obstacle size is introduced in this section, as depicted in 

Figure 5.23. This is to determine the robot step length, the step height, the foothold positions and 

the maximum obstacle size which the robot can step over. Some critical geometric parameters 

must be considered carefully during trajectory planning: 

 The distance of the bipedal  feet and the obstacle must have good clearance; 

  The swing feet must be lifted high enough to cross over the obstacle top; and  

 The step length must be sufficient to maintain good balancing and avoiding knee-

overstretch.   

This method is simple and effective. Besides that, other advantages are that no complicated 

optimization programming is needed and the parameters obtained are near to optimal value. To 

determine the parameters, firstly, the ground projection of the robot CoM (GCoM) must be 

within the rear support foot toe supporting polygon ‘a’. Secondly, the swing foot is stretched to 

maximum position ‘b’, which is limited by the rear feet toe angle θ and the leg length L1 and L2, 

and the maximum step size ‘s’ is obtained. Finally the maximum obstacle profile can be 

determined by direct measurement. In this research, referring to Figure 5.23, we chose the 

GCoM to be at the center of the rear foot toe, point ‘a’. This will give good stability when the 

swing foot and the robot CoM are moving across the obstacle. For the Tpinokio robot, with 

Z=682mm, θ=30
o
, L1=331mm, L2=300mm and s=504mm, the maximum obstacle profile is 

found to be w=130mm, w1=59mm, w2=49mm, h1=206mm and h2=322mm. 
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Figure 5.23. Geometrical measurement of robot stepping over obstacle parameters. 

 

Once the feet and pelvis trajectories are determined, the individual joint-space trajectory can be 

determined from the inverse kinematics transformation. In order to reduce the motion jerk, a 

seven degree polynomial function is used to set the swing feet path, so that the velocity, 

acceleration and jerk of the motion is reduced to zero at the beginning and end of the trajectory.  

 

The TPinokio robot is able to step over a rectangular obstacle profile of 130mm (w) x 186mm 

(h), with clearance 20mm on both sides for the toe and heel. The basic sequence for stepping 

over a rectangular obstacle is depicted in Figure 5.24, and described in algorithm 5.1, the 

simulation is depicted in Figure 5.25, 5.26 and 5.27 respectively. 
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Algorithm 5.1  Pseudo-code for stepping over obstacle in statically balancing mode. 

Input  : Initial position, sequence of foot and pelvis position.    

Output : Trajectory of CoM and all joints position. 

Start  

/* 1: initialization  

               set robot to initial posture, ready to step over obstacle. 

/* 2: double support  

               robot move its pelvis point  (CoM) to the left supporting leg position. 

/* 3: single support  

               robot  lifts its right swing leg, moves the swing foot over the obstacle. 

/* 4 : double support  

                robot lands its swing leg on the other side of the obstacle. 

/*5: double support,  

               robot moves it pelvis (CoM) toward the front support leg. 

/*6: single support 

               robot lifts its rear leg, swing it upward and over to clear the obstacle. 

/*7: double support  

               robot move back to initial posture, ready for next action. 

End  

  

 

Figure 5.24. Robot foot trajectories for stepping over a rectangular obstacle. 
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Figure 5.25. TPinokio step over obstacle posture model.  

 

 

 

Figure 5.26. Basic sequences for stepping over obstacle with statically balancing mode.  



 

 136 

 

Figure 5.27. Leg joints’ trajectory for stepping over obstacle, (a) Left leg, (b) Right leg.  

 

5.3.3 Step On and Over Obstacle in Statically Balancing Mode 

Another common method to cross a higher obstacle as shown in Figure 5.28, is by first stepping 

on the obstacle top surface and then lower down the support leg to clear the obstacle. With this 

method, the robot is able to clear a higher obstacle. 

 

5.3.3.1 Geometrical Method to Determine the Obstacle Size 

To determine the obstacle size, first we need to identify the front leg landing position at point 

‘a’, and the obstacle width ‘w’. For this analysis, the minimum obstacle width is chosen to be the 

same to the robot feet length so that the robot can stand firmly on the obstacle surface with the 

rear support leg, the robot pelvis Ground Center of Mass (GCoM) position is placed to be in line 

with the toe joint. Below are some critical geometric parameters must be considered carefully 

during trajectory planning:  

 The position of the bipedal robot and the obstacle must have good clearance; 

  The swing feet must be lifted high enough to reach the obstacle surface top and to avoid 

collision; and  

 The height of the Pelvis must be able to maintain good balancing and to avoid knee-

overstretch.   
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Once the position ‘a’ and ‘b’ is determined, we can begin to determine the other parameters. 

Slowly move the pelvis (CoM) vertically up alone the z-axis, until just before the ground support 

foot limited by the leg length  L1 and L2 . and at this position, the maximum obstacle height h can 

be determined as depicted in Figure 5.28. For our Tpinokio robot with z= 760mm, the maximum 

obstacle dimension the robot can step over is w=334mm and h= 325mm ,. 

 

Figure 5.28. Geometrical measurement of robot stepping on and over obstacle parameters. 

 

5.3.4  Stairs Climbing 

Stair climbing is an important capability for bipedal robot [C.L. Shih, 1999]. As illustrated in 

Figure 5.29, a stairs-climbing gait consists of double and single support phase. During the SSP, 

the biped resemble an open kinematic serial-chain rigid body, because only one stance foot is 

supporting the robot and the other swing foot moves forward to the front stairs-step. During 

DSP, the bipedal can be regarded as a closed kinematic chain because both feet are standing in 

stationary position on the stairs-step. 
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Static climbing on stairs is slower but is stable; we only need to ensure that the CoM/ZMP is 

within the support convex polygon at all times and that the position of the pelvis and both feet 

location meet the kinematic constraints while generating the motion trajectory. Dynamic 

climbing is faster but is more challenging because we need to track the CoM/ZMP closely to 

prevent falling over, and we also need to ensure that the pelvis and both feet position meet the 

kinematic constraints while generating the trajectory.   

 

In this section, we shall outline the sequences that a bipedal robot needs to take when ascending 

and descending stairs, and the constraints that must be satisfied in the procedures. 

 

5.3.4.1 Geometrical Method to Determine the Stairs Step Size 

Referring to Figure 5.29, in order to determine the stairs step size and the robot foothold 

position, below are some critical geometric parameters that must be considered carefully during 

our trajectory planning stage:  

 The distance of the robot foot-toe to the stairs vertical surface must have good clearance; 

  The swing foot must be lifted high enough to step over to reach the next stair-step 

without collision; and  

 The foot-step length must be sufficient to maintain good balancing and to avoid knee-

overstretching.   

To determine the parameters geometrically, first the ground projection of the robot CoM 

(GCoM) must be within the front foot supporting polygon, we chose it to be at the center of the 

ankle point ‘a’, the width of the stair-step is chosen to be slightly greater to then the width of the 

foot ‘w’, this will give good stability when the swing foot and the robot CoM are moving up the 

stairs. Next, the swing foot is stretched back to position ‘b’ to determine the foot-step length ‘s’. 

With the rear foot position fixed, the robot CoM is moved up to position ‘z’ vertically, which is 

limited by the leg length L1 and L2, to determine the maximum stair-step height ‘h’. And finally, 

the robot CoM movement during stairs climbing is determined by the virtual slope angle  θ.  For 

the Tpinokio robot, with w=354mm, s=354mm, L1=331mm and L2=300mm, the maximum stair-

step height is measured to be h=183mm and the virtual slope angle θ=27
o 

, which is about the 

standard stair-step dimension of most building.  
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Figure 5.29. Geometrical parameters of robot climbing stairs. 

 

5.3.4.2 Statically Balance Stairs Climbing  

A sequential algorithm is implemented to generate the trajectory for the pelvis, stance and swing 

feet to achieve a stable static stairs climbing. This approach will guarantee stability because we 

can dictate the motion trajectory to be with the support polygon. The movement of the pelvis in 

sagittal plane as shown in Figure 5.30, is set to follow an imaginary slope with an angle  

defined by the stairs step height. A seven degree polynomial function is used to generate the path 

trajectories to achieve a zero jerk start-stop path. The unknown coefficient a0, a1 , a2, …, a7  can 

be found by solving the following  matrix: 
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=
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0
0
0 ]
 
 
 
 
 
 
 

 .                            (5.35) 

 

 

Figure 5.30. Stairs climbing sequences. 

 

The basic sequences for climbing up and down stairs are described in algorithm 5.2 and 5.3 

respectively. And the simulation is depicted in Figure 5.31. 
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Algorithm 5.2  Pseudo -code for walking up stairs in statically balancing mode. 

Input  : Initial position, number of stairs, step size, sequence of foot and pelvis position.    

Output : Trajectory of CoM and all joints position. 

start 

/*1: double support 

            robot in initial posture, ready to step up stair, CoM at U1 position. 

/*2: double support 

             robot move its pelvis (CoM) to the supporting leg U2 position. 

/*3: single support 

              the robot lifts its swing leg, moves the swing foot up one stair to U3 position. 

/*4: double support 

              the robot moves it pelvis (CoM) to U3 position. 

/*5: single support 

              the robot lifts its rear leg, swing it upward one stair to U4 position. 

/*6: do until end of stairs  

      If not end of stairs 

              repeat 4 and 5 until end of stairs. 

      end  

/*7: double support 

        robot move back to initial posture, CoM at Uf  position. 

End 

 

Algorithm 5.3  Pseudo-code for walking down stairs in statically balancing mode. 

Input  : Initial position, sequence of foot and pelvis position.    

Output : Trajectory of CoM and all joints position. 

start 

/* 1: double support 

             robot in initial posture, ready to step up stair. CoM at D1 position. 

/*2: double support 

              robot move its pelvis (CoM) to the supporting leg D2 position. 

/*3: single support 

              robot lifts its swing leg, moves the swing foot down one step D3 position. 

/*4: double support 

              robot moves it pelvis (CoM) to D3 position. 

/*5: single support 

              robot lifts its rear leg, swing it down one step down to D4 position. 

/*6: repeat 4 and 5 until end of stairs. 

              If not end of stairs 

                         repeat 4 and 5 until end of stairs. 

              end  

/*7: double support 

              robot move back to initial posture. CoM at D5  position. 

end  
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Figure 5.31. Simulation of robot walking upstairs and its joints angle. 
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5.3.4.3 Dynamic Stairs Climbing 

In dynamic stairs climbing, a simple strategy is to apply the Inverted Pendulum Model (IPM) 

concept. As illustrated in Figure 5.32, the movement of the IPM in sagittal plane is now modeled 

to follow an imaginary slope with an angle 𝜃 define by the stairs step height and depth. With this 

assumption made, the dynamic equations for walking up and down on the stairs are similar to 

that of walking up and down on a slope, except that the walking step size is now constrained by 

the stairs’ depth.  

Referring to Figure 5.32, an imaginary line is added with gradient equal to tan 𝜃 =
ℎ

𝑤
 , where h 

denote the height and w is the depth and of the step. In order to avoid swing feet collision with 

the stairs’ step, additional constraints are imposed on the robot’s swing leg trajectory with the 

robot foot step size 𝑆𝑠 = 𝑤 and the foot step height to 𝑆ℎ > ℎ . 

 

 

Figure 5.32. ZMP-CoM model for walking up and down stairs. 

 

The constraints xz-plane and its parameters are set as follows:  

 

                       up-stairs:  𝑘𝑥 = tan𝜃 , 𝑘𝑦 = 0 , 𝑧 = 𝑧𝑐 + 𝑘𝑥𝑥 .       

                   down-stairs: 𝑘𝑥 = − tan𝜃 , 𝑘𝑦 = 0 , 𝑧 = 𝑧𝑐 − 𝑥 tan 𝜃 .       

 (5.35) 
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The constraints to the swing feet are 

𝑆𝑠 = 𝑤 , 𝑆ℎ > ℎ .                                                       (5.36) 

 

The parameters and dynamic equations for ZMP-CoM tracking for walking on stairs are : 

 Sagittal plane:  xz-axis :  𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 − (
𝑧𝑐

𝑔
) �̈�𝑐𝑜𝑚 .                                          (5.37) 

Frontal plane:  yz-axis  :  𝑦𝑧𝑚𝑝 = 𝑦𝑐𝑜𝑚 − (
𝑧𝑐

𝑔
) �̈�𝑐𝑜𝑚 .                                          (5.38) 

 

5.3.5 Turning on The Spot  

Turning on the spot is another challenging task for a bipedal robot. The robot needs to keep its 

balance while turning its foot to prevent leg collision. The follow sequences explain how a robot 

can make a 90
o
 turn in eight steps geometrically. As illustrated in Figure 5.33, in order to make 

the robot turn 90
o
, two circles and intermediate position (A, B, C, D, E, F, G, H) are drawn, these 

set points are the robot foot ankle landing spot, the inner circle is the distance of the foot ankle, 

the outer circle is the boundary for the foot ankle to avoid leg/foot collision. The sequences and 

position of the robot CoM (pelvis) and both foot to turn 90
o
 on the spot is illustrated in Figure 

5.34. To turn 180
o
, the robot will have to execute the same sequence twice.  

 

Figure 5.33. The robot geometrical boundary and position points for 90
o
 turn. 
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The turning sequences are described in algorithm 5.4 and illustrated in Figure 5.34. The 

simulation sequences are depicted in Figure 5.35.  

Algorithm 5.4 Pseudo-code for Turning 90
o
 on the spot. 

Input  : Initial position, set points.    

Output : Trajectory of CoM and all joints position. 

Start  

/*1:  Initialisation 

        robot moves its CoM to the required height (Zh),  

         && to the center of both foot, as depicted in Figure 5.34(1). 

/*2:   

         CoM shift to right foot support point, Figure 5.34(2). 

/*3:   

         Left foot ankle moves to point A(−𝑥𝐴 , 0) and turn 90
o
 through midpoint G(𝑥2 , 𝑦2),  

         && at the  same time, the CoM turn 45
o
, Figure 5.34(3). 

/*4:   

          CoM move to left foot support point A(−𝑥𝐴 , 0), Figure 5.34(4).  

/*5:     

          CoM turn another 45
o
, to face the final turning direction. Right foot move to point   

          D(𝑥𝐷 , 0) through midpoint H(𝑥1  , −𝑦1), &&  

          at the same time turn 90
o
, Figure 5.34(5). 

/*6:    

          CoM move to right foot support point D(𝑥𝐷 , 0 ), Figure 5.34(6). 

/*7:    

           Left foot moves to point C (−𝑥𝑐, 0), Figure 5.34(7). 

/*8:    

           CoM move to center point of both foot, Figure 5.34(8). 

end  

 

To turn the robot in any other angle of turning angle (), we can apply the general spline 

interpolation method to achieve the required motion. The sagittal and lateral trajectories of the 

foot ankle can be calculated with the following formula:  

𝑃𝑖(𝑥𝑖, 𝑦𝑖) ≔ {
𝑥𝑖 = 𝑥𝑜 + 𝑅 sin (

𝜃

𝑛
)

𝑦𝑖 = 𝑦𝑜 + 𝑅 cos (
𝜃

𝑛
)
  ,                                        (5.39) 

 

where (𝑥𝑜 , 𝑦𝑜) is the initial position, R is the tuning radius, and n is the number of steps to 

complete the turn.  
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Figure 5.34. The sequences and robot CoM (pelvis) and foot position for spot-turning. 
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Figure 5.35. (a) simulation sequences, (b) Left leg joints angle, (c) Right leg joints angle,  

                      (d) Experiment with robot. 
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5.4 Chapter Summary 

This chapter presents an optimal walking gait generation using the Augmented Model Predictive 

Control (AMPC) and the Inverted Pendulum Model (IPM) concept, which is a new approach 

based on the principle of preview control. The optimality in gait trajectory is achieved by model 

predictive control method that considers a trade-off between walking speed and stability. Piece-

wise single step trajectory with double-mass inverted pendulum model is also discussed. The 

double-mass model method is suitable for a robot to make single large foot step or stepping over 

obstacle with dynamic balancing. The AMPC-PZC method reduces the model’s undershoot 

water-bed effect by filtering the input ZMP reference waveform, this method produces a smooth 

output waveform and is suitable for general tracking. It is also presented that a robot with toe-

feet can produce a more natural stretch walking posture, and can achieve a larger walking stride 

in comparison to a flat-feet design. This chapter also presented the geometrical method in 

determining the near-optimal parameters of a robot to perform stairs climbing and stepping over 

obstacle. The optimal walking gaits were experimented on TPinokio robot. The effectiveness of 

the AMP/ZMP/IPM techniques and the passive toe-feet design are validated by simulation 

testing with the robot walking on slope, stepping over obstacle, climbing stairs and turning on 

the spot. 
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.  

 

CHAPTER 6 

STABILITY AND POSTURE CONTROL 

The Zero Moment Point (ZMP) concept and the Inverted Pendulum Model (IPM) were 

introduced and discussed in previous chapters. It was mentioned that bipedal locomotion control 

consists of a gait pattern generation block and a stabilizer block and was highlighted that without 

stabilization control, the bipedal cannot walk firmly. In this chapter, as illustrated in Figure 6.1, 

the stabilization concept which works along a given walking pattern and the posture control 

technique will be presented. 

 

Figure 6.1. Controller and stabilizer block diagram. 

 

6.1 Stability Margin and Support Convex Polygon (SCP)  

The CoM/ZMP criterion specifies a bipedal robot to be dynamically stable if the Zero-Moment-

Point remains within the support convex polygon (SCP) at all times [M. Vukobratovic, B. 

Borovac, 2004]. As depicted in Figure 6.2, if the ZMP remain within the SCP at all times, the 

biped is said to be statically stable. The stability margin of a bipedal is defined as how much the 
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ZMP is away from the center point of the SCP. The boundary of the constraint on the CoM in 

order for the biped to maintenance a stable posture is  

 

𝑍𝑀𝑃𝑚𝑖𝑛 ≤ 𝐶𝑜𝑀 ≤ 𝑍𝑀𝑃𝑚𝑎𝑥  .                                                (6.1) 

 

 

Figure 6.2. The support convex polygon (SCP) and the ZMP boundary. 

 

6.2 Stability of Linear Inverted Pendulum Model 

The dynamic equation of the inverted pendulum model in sagittal plane can also be expressed as 

𝑥𝑧𝑚𝑝 = 𝑥𝑐𝑜𝑚 −
1

𝜔𝑛2
�̈�𝑐𝑜𝑚 ,                                                    (6.2) 

where  𝜔𝑛 = √
𝑔

𝑧𝑐𝑜𝑚
  is the natural frequency of the pendulum.    

The above equation shown that if the robot moves in a fast pace, the CoM amplitude will be 

reduced, which corresponds to dynamic walking mode. If the robot moves in a slower pace, the 

ZMP and CoM trajectories are almost similar, this corresponds to static walking. A lower CoM 

will improve the robot walking stability. With 𝑧𝑐𝑜𝑚 = 0.6𝑚, the  natural frequency of the 

TPinokio robot is 4 Hz. 

 

6.3 AMPC Stability Analysis  

There are various approaches to measure and determine the stability of a robot locomotion gait. 

The general and basic approach is to study the CoM and ZMP trajectories to assess the stability 
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of the walking gait and this approach is feasible for both off-line and on-line gaits assessments. 

In Chapter 5, various gait generation algorithms were introduced. However, due to unpredictable 

surface conditions and external disturbances, stabilizers with sensory feedback are being 

introduced into the controller to improve the system robustness. This section presents the 

stability analysis of the controllers designed in Chapter 5. 

 

6.3.1 AMPC Model with Constraints on the Amplitude of the Control 

Variable 

To achieve a stable walking, the system jerk should kept as small as possible and this can be 

done by setting limits to constraint the amplitude of the control variable U by demand that  

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 .                                                  (6.3) 

 

To demonstrate this, we done a simulation with AMPC model by limiting the x and y control 

variables with constraints (−5 ≤ 𝑢𝑦(𝑘) ≤ 5 ) and (−10 ≤ 𝑢𝑥(𝑘) ≤ 10) , the control variables 

waveform is as shown in Figure 6.3. It is observed from Figure 6.4 that constraints on the 

control signal U are satisfied,  the output CoM (red curve) response remains close to the desire 

ZMP (blue curve). We can modify the constraints to suit different working environment. 

 

Figure 6.3. Control variables response with constraints. 
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Figure 6.4. AMPC tracking trajectory with constraints. 

 

6.3.2 Augmented MPC Model with Noise  

One of the key features of AMPC predictive control is the ability to handle constraints in the 

design. To check the robustness of the AMPC model in tracking the desired ZMP, about random 

noise (±0.01m) of about 10% of the reference signal was added to the reference ZMP waveform. 

The simulation results were as depicted in Figure 6.5. The results show that the AMPC model is 

still able to produce a good tracking even in a noisy environment.  

 

Referring to Figure 6.6, tt was observed that the control signal in the sagittal plane (𝑢𝑥) produced 

a higher jerk than that in the frontal plane (𝑢𝑦). This is because the bipedal robot takes a larger 

step (0.4m/step) in the sagittal-plane than the frontal-plane (+0.102m). 
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Figure 6.5. AMPC model tracking trajectory with noisy input. 

 

 

Figure 6.6. AMPC model system jerk response with noisy waveform. 
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6.3.3 AMPC-PZC Model with Noise  

The same random noise of  ±0.01m is injected into the AMPC-PZC system, the simulation 

results are depicted in Figure 6.7 and Figure 6.8. It is observed that although the control signal 

had higher fluctuation, but the output trajectory still remain stable.  

 

Figure 6.7. AMPC-PZC tracking waveform simulation with noise. 

 

 

Figure 6.8. AMPC-PZC control signal simulation with noise. 
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6.3.4 Observer-based Model Predictive Control 

An observer, as illustrated in Figure 6.9, may be used in a situation where the state variable 𝑥(𝑘) 

is not measurable, for instance, the CoM, is not measurable due to noisy environment. The robot 

state 𝑥(𝑘𝑖) can be estimated by an observer [L. Wang, 2009] of the form: 

 

(6.4) 

The predictive control law is similar to the AMPC model discussed in chapter 5. We find ∆𝑈 by 

minimizing the cost function 

 

𝐽 = (𝑅𝑠 − 𝐹�̂�(𝑘))
𝑇(�̅�𝑠𝑟(𝑘 + 𝑡𝑎) − 𝐹�̂�(𝑘)) − 2∆𝑈

𝑇∅𝑇(𝑅𝑠 − 𝐹�̂�(𝑘)) + ∆𝑈
𝑇(∅𝑇∅ + �̅�)∆𝑈 .  

                                         (6.5) 

The optimal solution can be derived as 

 

∆𝑈 = (∅𝑇∅ + �̅�)−1∅𝑇(𝑅𝑠 − 𝐹�̂�(𝑘)) .                                    (6.6) 

The optimal solution for ∆𝑢(𝑘) at time 𝑘  is 

 

∆𝑢(𝑘) = 𝐾𝑦𝑟(𝑘 + 𝑡𝑎) − 𝐾𝑚𝑝𝑐�̂�(𝑘) .                                           (6.7) 

 

The closed-loop characteristic equations and the eigenvalues of the closed-loop system are obtained 

as follows: nb 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘) = 𝐴𝑥(𝑘) + 𝐵𝐾𝑦𝑟(𝑘 + 𝑡𝑎) − 𝐵𝐾𝑚𝑝𝑐�̂�(𝑘),                (6.8) 

 

substitute ∆𝑢(𝑘) with equation (6.7), and define the close loop observer error equation as 

 

(6.9) 

 

where �̃�(𝑘) = 𝑥(𝑘) − �̂�(𝑘), equation (6.8) can be rewritten as 

𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐾𝑚𝑝𝑐)𝑥(𝑘) + 𝐵𝐾𝑚𝑝𝑐�̃�(𝑘) + 𝐵𝐾𝑦𝑟(𝑘 + 𝑡𝑎) .                        (6.10) 
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Combining equation (6.9) and (6.10) leads to  

(6.11) 

The characteristic equation of the close-loop state space system can be obtained as  

 (6.12) 

and the eigenvalue can be determined which is equivalent to 

 

(6.13) 

 

This means that the robot closed-loop model and the state estimator have two independent 

characteristic equations 

(6.14) 

As such, one can design the predictive control law and the observer separately. 

 

Figure 6.9. Block diagram of AMPC with observer. 



 

 157 

6.4 Balancing Control with Sensors Feedback 

During the walk cycle, the hip/pelvis link of the robot may not always maintain in a horizontal 

position due to gravitational, vibration and other mechanical structural limitations. As a result, 

the swing leg is prone to collide with the stance leg. Standing or walking on slope poses another 

difficulty in maintaining a stable posture. This section will discuss and propose some simple 

corrective actions to improve the robot stability.   

 

A nine-axis Inertial Measurement Unit (IMU) is mounted on the robot pelvis center position to 

measure the robot roll, pitch and yaw motion and another two three-axis tilt sensors are mounted 

on the robot ankle joint to measure the floor inclination during walking, and also to provide 

feedback when the robot swing foot touch down on ground surface. These readings from the 

sensors will compensate for the ground condition and any system’s errors accordingly. 

 

6.4.1 Collision Avoidance Control 

During locomotion, leg collision must be avoided in order to achieve a stable walking at all times 

when the robot swings its legs. As illustrated in Figure 6.10, a bipedal robot is not a complete 

rigid-body as was assumed, and in fact some compliances and flexing were observed in the joint 

and link when a robot walks. To compensate for the hip angle roll error  𝜃𝑟𝑜𝑙𝑙 , an angular 

compensator can be easily implemented using a P-type controller, and the feedback error angle 

can be monitored and measured by using an IMU sensor. This can be done as follows:  

 

Compensation angle for right hip roll, where 𝑘𝑟 is the gain, is 

∆𝜃𝑟1 = 𝑘𝑟|𝜃𝑟𝑜𝑙𝑙| , 

𝜃𝑟 = 𝜃𝑟1 ± ∆𝜃𝑟1 .                                                    (6.15) 

 

And, compensation angle for left hip roll, where 𝑘𝑙 is the gain, is 

∆𝜃𝑙1 = 𝑘𝑙|𝜃𝑟𝑜𝑙𝑙| , 

𝜃𝑙 = 𝜃𝑙1 ± ∆𝜃𝑙1 .                                                     (6.16) 
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Figure 6.10. Roll angle compensation of swing leg for frontal plane. 

 

6.4.2 Slope Balancing Control 

In order to achieve a more stable walking or balancing on a slope, the robot torso and ankle angle 

must be monitored and compensated accordingly based on the IMU feedback data. This 

controller can be implemented with simple P-type or a PI-type controller, as illustrated in Figure 

6.11 and Figure 6.12. 

 

Slope compensator (Sagittal plane), where 𝑘 is the gain, is 

 

𝜃4 = 𝜃4
′ ± 𝑘|𝜃𝑝𝑖𝑡𝑐ℎ| .                                                        (6.17) 

 

Slope compensator (Frontal plane), where 𝑘𝑝  and 𝑘𝑟  is the gain, is 

𝐿𝑙 = 𝐿𝑙
′ + (𝑘𝑝𝑙 +

𝑘𝐼𝑙
𝑠
)∅𝑟𝑜𝑙𝑙 , 

𝐿𝑟 = 𝐿𝑟
′ + (𝑘𝑝𝑟 +

𝑘𝐼𝑟
𝑠
)∅𝑟𝑜𝑙𝑙 , 

∅5 = ∅5
′ + tan−1 (

𝐿𝑟−𝐿𝑙

𝑑
) .                                                    (6.18) 
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Figure 6.11. Sensor feedback compensation on slope surface for sagittal plane. 

 

 

 

Figure 6.12. Sensor feedback compensation on slope surface for frontal plane. 

 

6.4.3 Foot Impact Shock Absorber Stabilizer 

During walking, once the swing foot of the biped contacts the ground, the impact reacting force 

from the ground many cause stability issue because the impact will generates an undesired push 

off force from the ground. As depicted in Figure 6.13, compliance or soft material is used on the 

sole of the bipedal to soften the landing impact force, and the F/T sensor provides feedback to 

the stabilizing controller to bend the leg to act as like a spring-mass damper shock absorber to 
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reduce the ground impact force. The damping response simulation is as shown in Figure 6.14, the 

dumping parameters b=7000  and k=60000 are chosen experimentally.  

 

𝑧𝑑𝑝 =
𝐹𝑧(𝑠)

𝑚𝑠2 + 𝑏𝑠 + 𝑘
 .                                                       (6.19) 

 

 

Figure 6.13. Spring-mass model of a robot with bending legs. 

 

 

Figure 6.14. Damping response of the shock absorber with T=1 second.   
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6.5 Chapter Summary  

This chapter presents the differences in balance and stability measurement for the bipedal robot. 

The AMPC method with noise injected into the reference waveform and the measured ZMP are 

identified and the method to correct the CoM position is proposed. The ZMP criterion is used to 

determine the stability margin. We also analyzed the method of accessing stability and balance 

based on the Support Convex Polygon (SCP) boundaries for the TPinokio robot. Discrepancies 

between the measured CoM through the inverse kinematics method are corrected using posture 

compensation controller with IMU and F/T sensors.  

  



 

 162 

 

CHAPTER 7 

CONCLUSION AND   

CONTINUOUS RESEARCH  

 

Stable humanoid bipedal locomotion is still an ongoing and challenging research activity for 

researchers from the robotics community. The research works of the TPinokio humanoid robot 

began in 2011, and has made significance progress till now. The primary objective and milestone 

of this research was to design, build and develop a modeling framework for a teen-size bipedal 

humanoid robot that can walk in a steady manner both statically and dynamically in an 

unstructured environment such as on slope and stairs. In this chapter, some discussion on bipedal 

walking issues and to what extent the future continuous research direction should be formulated 

is presented. Please refer to http://www.tpinokio.com for continuous update on the research 

works. 

 

7.1 Research Summary  

The aim of this thesis is to present the works done during the past three years. During the first 

one and a half year, most of the effort was concentrated on developing the mechanical structure, 

interfacing the motion control electronics, assembling the gear-drive mechanism and testing the 

sensors interface. In the following two years, research efforts were spent on the system 

modeling, walking gait generation, simulation, stability analysis and experimental testing. The 

accomplishments for this research are as mentioned below:   

 The primary objective of developing a humanoid bipedal robot with toe-feet, its 

sensory system and drive mechanisms has been successfully implemented; 

 The kinematics and dynamics model of the robot is successfully developed and 

implemented with MATLAB for simulation and testing of various control algorithms; 

 A stable gait generation and control method using AMPC/LIPM model has been 

proposed and simulated with MATLAB, and tested on the physical robot;  
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 Simplified model of the robot walking on slope, stairs, and step over and obstacle is 

implemented and simulated with MATLAB, and tested on the physical robot. 

 

7.2 Continuous Research Activities and Recommendations for 

Future Works  

Although in this thesis, different techniques and suggestions to achieve stable bipedal walking on 

different surfaces are proposed and simulated, a more detail study and modeling of the robot 

walking characteristics will be needed in order to develop a more advance human-like walking 

posture and mechanisms. The ultimate goal is to develop a bipedal robot capable of becoming a 

domestic helper in area of assistive robotics in the elderly care sector. Several continuous 

activities and directions for future research with the TPinokio robot are briefly discussed in the 

subsequent sections. A number of interesting extensions of the research work presented in this 

thesis are now suggested as future research works. 

 

7.2.1 Kneeling Down and Recovery Posture  

Kneeling down to pick up an object on the floor is the next natural task that should be performed 

by a bipedal robot. To kneel down, pick up an object and recovery to it standing position with the 

robot still maintains good stability is a challenging task [K. Fujiwara, F. Kanahiro et al., 2003],  

because this involves whole body movement, coordination of legs, hip, upper body and arms 

motion and not forgetting that the dynamic of the robot is changed after picking up an object. 

Due to the limitation of the fingers joints grasping capability, the TPinokio is designed to pick up 

object that weighs less than 2kg. Figure 6.1 depicts the kneeling down sequences. Note that the 

CoM and support polygon is different for every different motion frame segment. 
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Figure 7.1. Kneeling down sequences. 

  

7.2.2 Landing Stability 

Bipedal locomotion is sensitive to the environment perturbation. For an ideal structural 

mechanism and a perfect structured even surface, the robot is able to execute smoothly with any 

prescribed motion trajectories. However, this is not the case in a real environment. The stability 

conditions need to be established, especially for a stable foot landing on unknown and uneven 

terrain. Landing stability analysis is important in establishing a stable walking posture, for 

example, the foot-ground contact may be modeled like a spring-damper mechanism. These 

aspects are worth for a detail study to increase the robot locomotion robustness. 

 

7.2.3 Active Toe-joint and Toe-foot Rotation Characteristics   

As discussed in Chapter 5, robot with toe-foot results in the reduction of rotation speed of knee 

angle and the increase in step length.  Besides that, toe-foot produced more natural walking gait 

and posture. The TPinokio robot is designed with passive toe-foot and is capable for stretch 

walking. Bipedal walking with toe-foot rotation is under-actuated by one DoF. Due to the 

passive DoF at the joint between the toe and the contact surface, the biped is modeled as an 
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under-actuated system. The stability aspects and energy efficiency of such configurations are 

worth further research study especially with active-toe-foot. 

 

7.2.4 Rotation of Posture Using Slippage Turning Technique 

A simple and effective spot-turning method is proposed in Chapter 5. The assumption is that 

there is no slippage between the contact surface and the stance foot/feet. In such a case, the robot 

tends to take smaller steps when turning and resulting in a slower movement because the swing 

foot has to be completely lifted from ground, and this is not energy efficient. Another method 

which is using foot slippage and ground fictional forces to assist in body turning is an interesting 

research topic [K. Miura, F. Kanehiro et al.,2013]. To effectively implement the slippage 

technique, the robot spinning dynamic model, contact forces and slippage phenomenon worth 

further investigation and study. 

 

 

Figure 7.2. Slippage turning with toe. 

 

7.2.5 Motion with external object 

Some typical examples of a robot using multiple non-coplanar contacts to perform a dynamic 

motion and task are illustrated in Figure 7.3. In such a situation, the CG and ZMP position will 

be modified by the whole body mass and the external object and the hand reaction force will 
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modify the force distribution in the robot body [L. Saab, O.E Ramos et al., 2013]. The generation 

of motion and controlling of the robot in such environment is a challenging problem worth 

further investigation and study. 

 

 

Figure 7.3. Modification of CoG and ZMP position.  

 

7.2.6 Running Motion and Control 

The most obvious difference between walking and running gait is that during walking, one leg 

always stays on the contact surface while the other is swinging in air. In running, there is 

typically a flight phase (Edward Muybridge's 1887 motion study of an athlete running) as 

depicted in Figure 7.4, where the robot is airborne with both feet in the air [R. Tajima, D. Honda 

et al., 2009], [S. KAJITA, TAKASHI et al., 2007], [K. Arikawa, T. Mita, 2002]. Making a 

bipedal robot that is capable of running is an extremely challenging task with current knowledge 
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and technologies. As illustrated in Figure 7.4, there are three major technical issues that need to 

be looked into: high impact reaction force; floor slippage while pushing and jumping forward; 

and the spinning reaction force generated by the fast motion. To address and solve these 

challenging issues, a faster controller to response to the reaction force is needed to stabilize the 

whole-body coordination to prevent slippage, and to coordinate the robot’s upper body with arm 

motion to counter act the spinning force. Further study and research activities are needed to 

understand both the complexity and the motion characteristics of the bipedal body flight 

dynamic. 

 

 

Figure 7.4. Human running motion and flight phase. 
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Appendix A 

TPinokio Robot Mechanical System Design 

 

A.1 TPinokio CAD drawing 

The mechanical structure of TPinokio is as depicted Figure A.1.1. Additional information can be 

found at www.tpinokio.com . 

 

 

 

Figure A.1.1. TPinokio robot mechanism and CAD drawing 
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A.2 Distribution of Mass and CoM Location of the Modular Parts  

The mass of the modular parts are listed in Table A.2.1, the values are calculated using 

SolidWorks software.  

Table A.2.1. TPinokio Modular Parts. 

Modular 

Part 

CAD Drawing CoM weight  

(kg) 

CoM location 

(from reference coordinate) 

Upper  

body 

assembly 

 

13.13Kg  

 

 

[−28.55 189.30 −66.24] 

Pelvis 

assembly 

 

6.8kg 

 

[−23.83 3.22 −141.20] 

Hip 

assembly 

 

4.16kg 

 

[−64.04 −39.13 −78.10] 

Knee 

assembly 

 

1.5kg 

 

 

 

[−37.01 84.71 −93.36] 

Ankle 

and feet 

assembly 

 

4.5kg 

 

[63.82 23.30 −111.17] 
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A.3  TPinokio Robot Power Consumption 

Maxon DC motors [http://www.maxonmotor.com] are used in the joint actuator design due to its 

high performance and good power-to-weight ratio. Another reason for choosing DC motor is the 

ease to control, as the DC motor speed and torque is proportional to the input voltage and current 

respectively. Maxon motors are made with a wound field stator and a permanent magnet rotor, 

which has an efficiency of more than 90% . The torque and power requirements of the robot are 

summarized in Table A.3.1, The motors specifications are listed in Table A.3.2, and the actuators 

specification are listed in Table A.3.3.   

Table A.3.1. TPinokio robot torque and power requirement. 

Body 

segment 

Joint Movement Max Torque 

(Nm) 

Power 

(w) 

Head Neck Pitch 2.217 6.96 

Yaw 2.217 6.96 

Chest Waist Pitch 3.56 8.9 

Roll 24.69 2.52 

Yaw 3.56 5.48 

Arm Shoulder Pitch 11.64 17.46 

Roll 11.64 17.46 

Yaw 11.64 17.46 

Elbow Pitch 4.99 7.49 

Wrist Pitch 2.205 3.3 

Yaw 2.205 3.3 

Hand Fingers Pitch 0.98 1.54 

Leg Hip Pitch 13.87 108.87 

Roll 31.78 13.03 

Yaw 15.68 24.62 

Knee Pitch 23.63 164.96 

Ankle Pitch 54.53 107.04 

Roll 61.17 25.07 
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Table A.3.2.  Robot motors specifications. 

Motor data Maxon RE40, 150W Maxon RE35, 90W  

Nominal voltage 24v 24v  

Nominal speed 6930 rpm 6910  

Nominal torque 170 mNm 93.3 mNm  

Stall torque 2280 mNm 1160 mNm  

Max. permissible speed 12000 rpm 12000 rpm  

 

 

Table A.3.3.  The robot actuator specifications and maximum operation range.   

Joint motion Harmonic gear size 

/ratio/ 

max torque 

Pulley& 

belt 

ratio 

Motor 

power & 

max. speed 

Angle Range 

(similar to 

Human ) 

Neck Pitch 

Yaw 

RX64, 200:1, 64kgf.cm 

RX64, 200:1, 64kgf.cm 

- 

- 

21w 

21w 

-30
o
 to 90

o 

-80
o
 to 80

o 

Shoulder Yaw Size 14 / 100 :1 

54Nm 

2:1 90w, 360
o
/s -90

o
 to 90

o
 

 Pitch Size 14 / 100 :1 2:1 90w, 360
o
/s -180

o
 to 120

o
 

Elbow Pitch EX-106 ,164:1,10.4Nm 1:164 59w 0
o
 to 130

o
 

Waist Roll 

Pitch 

Yaw 

Size 14, 100:1, 54Nm 

Size 14, 100:1, 54Nm 

Size 14, 100:1, 54Nm 

 

1:1 

1:1 

2:1 

90w, 720
o
/s 

90w, 720
o
/s 

90w, 360
o
/s 

-50
o
 to 50

o 

-20
o
 to 70

o 

-70
o
 to 70

o 

 

Hip Roll 

Pitch 

Yaw 

Size 20, 120:1, 147Nm 

Size 20, 160:1, 147Nm 

Size 14, 100:1, 54Nm 

 

2:1 

2:1 

2:1 

150w, 300
o
/s 

150w, 225
o
/s 

90w, 360
o
/s 

-60
o
 to 45

o 

-130
o
 to 45

o 

-90
o
 to 60

o
 

Knee Pitch 

 

Size 17, 120:1, 110Nm 

 

2:1 200w, 300
o
/s 0

o
 to 150

o
 

Ankle Roll 

Pitch 

 

Size 14, 100:1, 54Nm 

Size 20, 160:1, 147Nm 

 

2:1 

2:1 

 

150w, 300
o
/s 

150w, 225
o
/s 

-20
o
 to 30

o 

-30
o
 to 80

o
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A.4  Motor Tuning 

The optimal PID parameters of the motors are tuned with EPOS studio, the sample plots is as 

shown in Figure A.4.1.  

 

Figure A.4.1. Motor PID parameters tuning. 
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A.5 Gear and Belt Selection 

Selecting the right gears for the joints is not a trivial task. Suitable gears should be light 

weighted, high efficiency, low backlash and have good torque-to-volume ratio. Harmonic Drive 

gears (HDG) are used in the joints design due to its compact casing, high torque and its zero-

backlash. Furthermore, the axes of the motors and gears can be positioned parallel coupled by 

pulley and belt instead of on the same axis. 

 

A.5.1 Harmonic Drive Gear Design 

The harmonic drive gear [http://www.harmonicdrive.net] as depicted in Figure A.5.1(a) is an 

assembly of three main parts; an outer ring named circular spline, a metal cup named flexspline 

and an elliptic steel disk named the wave generator. The basic operation is shown in Figure 

A.5.1(b). The wave generator is used as the input and is mounted inside the flexspline, which is 

used as the output. The wave generator is mounted in the flexspline. The flexspline has teeth 

machined into the outer surface of the steel cup, and the circular spline has teeth machined on the 

inner surface of the ring. The flexspline has two teeth less than the circular spline.  

 

 

Figure A.5.1.  Harmonic gear, (a) Basic components, (b) Operation concept. 

 

In order to reduce the number of design parts, SHF units were selected for this project. This is 

due to its compactness, light weight and has an input shaft, which makes implementation of a 
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belt drive easy and it can be mounted directly on the joint assembly. The specifications are listed 

in Table A.5.1.   

 

Table A.5.1. SHF series harmonic gear specification.  

SHF-2UJ Mass 

[kg] 

Nominal 

torque [Nm] 

Max repeated 

torque [Nm] 

Max 

momentary 

torque[Nm] 

Max input 

speed [rpm] 

14 0.64 7.8 28 54 8500 

17 0.95 24 54 110 7300 

20 1.40 40 82 147 6500 

 

A.5.2 Synchroflex Timing Belts  

CONTI SYNCHROFLEX® timing belts [http://www.contitech.de/] is used on TPinokio gear 

system as shown in Figure A.5.2. It is able to deliver high outputs due to its high-grade 

components. 

 

Figure A.5.2. Synchroflex timing belts. 

 

The belt is made from hard-wearing polyurethane and constant-length galvanized steel and can 

produce high power output. The manufacturing process combines the advantages of high pitch 

and angular accuracy and is particularly suitable for high rotational speeds. The rotational speed 

of the belt can reach a range of up to 20,000rpm. 



 

 184 

A.6 Kinematic (D-H parameters) model for TPinokio Robot. 

The kinematic coordinate and link frames are as depicted in Figure A.6.1. The D-H link 

parameters are listed in Table A.6.1 to A.6.5.  

  

Figure A.6.1.  TPinokio D-H model and link frames.   
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Table A.6.1.  D-H parameters for Right leg toe to CoM.  
Frame no. 

Joint axis j 

Link Length 

𝑎𝑗 
Link twist 

∝𝑗 
Joint Distance 

𝑑𝑗 
Joint Angle 

𝜃𝑗 

RF * * * * 

0 dRF2 0 0 0 

RB d1 0 0 𝜃0 

1 d2 -90 0 -90 

2 0 90 0 𝜃1 

3 d3 0 0 𝜃2 

4 d4 0 0 𝜃3 

5 0 -90 0 𝜃4 

6 0 -90 0 -90+𝜃5 

CoM d6 0 d5 𝜃6 

 

Table A.6.2.  D-H parameters for CoM to Left leg toe.   
Joint axis j 𝑎𝑗 ∝𝑗 𝑑𝑗 𝜃𝑗 

CoM * * * * 

7 d7 0 d8 0 

8 0 90 0 𝜃7 

9 0 -90 0 -90+𝜃8 

10 d9 0 0 𝜃9 
11 d10 0 0 𝜃10 

12 0 90 0 𝜃11 

LB d11 -90 0 𝜃12 

13 d12 0 0 -90 

LLT dLF2 0 0 𝜃13 

 

Tabel A.6.3.  D-H parameters for CoM to Right Hand finger tip. 
Joint axis j 𝑎𝑗 ∝𝑗 𝑑𝑗 𝜃𝑗 

CoM * * * * 

14 0 0 d13 0 

15 0 90 0 𝜃14 

16 0 -90 0 90+𝜃15 
17 d14 90 d16 𝜃16 

18 0 -90 0 𝜃17 

19 0 0 d17 𝜃18 

20 0 90 d18 𝜃19 
21 d19 0 0 90+𝜃20 
22 0 -90 0 −90 + 𝜃21 

RHT 0 0 dRH 𝜃22 

 

 

  



 

 186 

Table A.6.4.  D-H parameters for CoM toLeft Hand finger tip. 
Joint axis j 𝑎𝑗 ∝𝑗 𝑑𝑗 𝜃𝑗 

CoM * * * * 

14 0 0 d13 0 

15 0 90 0 𝜃14 

16 0 -90 0 90+𝜃15 
23 d14 90 d20 𝜃16 

24 0 90 0 𝜃23 

25 0 0 d21 𝜃24 

26 0 -90 d22 𝜃25 

27 d23 0 0 -90+𝜃26 
28 0 90 0 90+𝜃27 

LHT 0 0 dLH 𝜃28 

 

Table A.6.5.  D-H parameters for CoM to Head. 
Joint axis j 𝑎𝑗 ∝𝑗 𝑑𝑗 𝜃𝑗 

CoM * * * * 

14 0 0 d13 0 

15 0 90 0 𝜃14 

16 0 -90 0 90+𝜃15 
29 d14+d15 0 0 𝜃16 

30 0 -90 0 -90+𝜃29 
HD 0 0 dHD 𝜃30 

 

A.7 Inverse Kinematic 

Referring to Figure A.7.1, the right leg close-form based on geometrical method and the set of 

equations are presented in this section without detailed explanations. 

 
Figure A.7.1. TPinokio geometrical parameters. 
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The Cartesian coordinate of the right hip with reference to and expressed in the pelvis (𝑝1) 
coordinates is  

𝑝2 = 𝑝1 + 𝑅1 . 

The parameters between the ankle and hip (𝑝2, 𝑝7) can be calculated as follows:  

𝑟 = 𝑅7
𝑇(𝑝2 − 𝑝7) ≡ [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇 , 

𝐶 = √𝑟𝑥2 + 𝑟𝑦2 + 𝑟𝑧2  , 

𝐶2 = 𝐴2 + 𝐵2 − 2𝐴𝐵 cos(𝜋 − 𝑞5) . 

A solution for the knee pitch angle 𝑞5 is found immediately by solving the above equations. 

𝑞5 = −cos
−1 (

𝐴2 + 𝐵2 − 𝐶2

2𝐴𝐵
) + 𝜋 . 

Applying the trigonometric relationship, the hip and ankle angle can be calculated as follows:  

 

 (A.7.1) 
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 Appendix B 

Theory of Applied Robotics 

B.1 Denavit-Hartenberg (D-H) Notation  

A DH coordinate frame [Reza N. Jazar, 2010], as depicted in Figure B.1, is identified by four 

parameters:   

 

 

Figure B.1. Definition of D-H parameters.  
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A D-H parameter table as shown in Table B.1, helps to establish a systematic way to determine 

the parameters. 

Table B.1 D-H parameter table of the link. 

Frame No. 𝑎𝑖 𝑖 𝑑𝑖 𝑖 

1 𝑎1 1 𝑑1 1 

2 𝑎2 2 𝑑2 2 

... … … … … 

j 𝑎𝑗 𝑗  𝑑𝑗 𝑗 

… … … … … 

n 𝑎𝑛 𝑛 𝑑𝑛 𝑛 

 

B.2 Transformation Between Frames  

B.2.1 Frame Coordinate 

By using the Denavit-Hartenberg convention, to transform the coordinate of frames Bi to a new 

frame Bi - 1 , the transformation matrix 𝑇𝑖
𝑖−1   can be expressed as follows : 

 

𝑇𝑖 =
𝑖−1 [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑐𝑜𝑠𝜃𝑖
−𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑠𝑖𝑛𝜃𝑖

0            𝑠𝑖𝑛𝛼𝑖
0            0

𝑐𝑜𝑠𝛼𝑖              𝑑𝑖
0              1

] .                 (B.2.1) 

Where  

 

 

The transformation equation between Bi ( xi, yi, zi) and Bi-1 ( xi-1, yi-1, zi-1) can be written as    
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[

𝑥𝑖−1
𝑦𝑖−1
𝑧𝑖−1
1

] = 𝑇𝑖 [

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

]𝑖−1  ,                                                       (B.2.2)                                                             

where 

𝑇𝑖 = [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑐𝑜𝑠𝜃𝑖
−𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑠𝑖𝑛𝜃𝑖

0            𝑠𝑖𝑛𝛼𝑖
0            0

𝑐𝑜𝑠𝛼𝑖              𝑑𝑖
0              1

]𝑖−1  .                      (B.2.3) 

This 4 × 4 matrix (B.2.3) can be further partitioned into rotational and translational parameters 

𝑇𝑖 = [
𝑅𝑖

𝑖−1 𝑑𝑖
𝑖−1

0 1
]𝑖−1  ,                                                      (B.2.4) 

where  

𝑅𝑖
𝑖−1 = [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖 𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖 −𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖
0 𝑠𝑖𝑛𝛼𝑖 𝑐𝑜𝑠𝛼𝑖

] ,                                     (B.2.5) 

and  

𝑑𝑖 = [

𝑎𝑖𝑐𝑜𝑠𝜃𝑖
𝑎𝑖𝑠𝑖𝑛𝜃𝑖
𝑑𝑖

]𝑖−1  .                                                          (B.2.6) 

Similarly, the inverse of the transformation matrix can be expressed as   

𝑇𝑖−1
𝑖 = 𝑇𝑖−1

𝑖
−1 = [

𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖
−𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖

0 −𝑎𝑖
𝑠𝑖𝑛𝛼𝑖 −𝑑𝑖𝑠𝑖𝑛𝛼𝑖

𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖 −𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖
0            0

𝑐𝑜𝑠𝛼𝑖 −𝑑𝑖𝑐𝑜𝑠𝛼𝑖
0  1

] .                        (B.2.7) 

 

B.2.2 Rotational Matrixes 

The rotational matrixes for the three x-y-z axes are  

  

(B.2.8) 

B.3 Iterative Technique 

Applying the inverse kinematics technique to search for the solution qk from a set of nonlinear 

equation can be expressed as   
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(B.3.1) 

                                   for    𝑟𝑖𝑗 = 𝑟𝑖𝑗(𝑞𝑘)  ,                   𝑘 = 1,2, … . 𝑛 . 

where n denote the DoF.  

Equation (B.3.1) is used to determine the joint variable (qk) by applying the Newton-Raphson 

iterative method to solve the following kinematic equation by setting 

𝑇(𝑞) = 0 .                                                           (B.3.2) 

We begin with a calculated guess for the joint variables  , 

𝑞∗ = 𝑞 + 𝛿𝑞.                                                          (B.3.3) 

Applying the forward kinematics notation, the orientation parameters of the end-effector with 

some ‘guessed' 𝑞 variables is determined 

𝑇∗ = 𝑇(𝑞∗) .                                                          (B.3.4) 

 

Therefore, the ‘guessed’ error, must now be minimized with  

𝛿𝑇 = 𝑇 − 𝑇∗ .                                                         (B.3.5) 

The Taylor expansion of equations (B.3.3) is  

(B.3.6) 

Assuming ≪ 𝐼 , we can write   

𝛿𝑇 = 𝐽𝛿𝑞,                                                             (B.3.7) 

where J is the Jacobian matrix, cane be repressed as  

𝐽(𝑞) = [
𝜕𝑇𝑖

𝜕𝑞𝑗
] ,                                                          (B.3.8) 

That implies   

𝛿𝑞 = 𝐽−1𝛿𝑇 .                                                        (B.3.9) 

Therefore, the unknown variables q are 

𝑞 = 𝑞∗ + 𝐽−1𝛿𝑇 .                                                   (B.3.10) 

The values obtained by (B.3.10) are then used as a new input value to repeat the iterative process 

for closer values and finally converge to the actual variables 
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(B.3.11) 

 

The iteration method is illustrated in Figure B.3. 

 

Figure B.3. Iteration block diagram. 

 

Work example :Inverse kinematics for a two link planar manipulator.  

The end-effector position of a two link  planar manipulator can be described by 

[
𝑋
𝑌
] = [

𝑙1𝑐𝜃1 + 𝑙2𝑐(𝜃1 + 𝜃2)
𝑙1𝑠𝜃1 + 𝑙2𝑠(𝜃1 + 𝜃2)

] .                                           (B.3.12) 

We define  𝑞 = [
𝜃1
𝜃2
] and = [

𝑋
𝑌
] , the Jacobian matrix is 

𝐽(𝑞) = [
𝜕𝑇𝑖

𝜕𝑞𝑗
] = [

𝜕𝑋

𝜕𝜃1

𝜕𝑋

𝜕𝜃2
𝜕𝑌

𝜕𝜃1

𝜕𝑌

𝜕𝜃2

] = [
−𝑙1𝑠𝜃1 + 𝑙2𝑠(𝜃1 + 𝜃2) −𝑙2𝑠(𝜃1 + 𝜃2)
𝑙1𝑐𝜃1 + 𝑙2𝑐(𝜃1 + 𝜃2) 𝑙2𝑐(𝜃1 + 𝜃2)

] .        (B.3.14) 

The inverse is   

𝐽−1 =
−1

𝑙1𝑙2𝑠𝜃2
[

−𝑙2𝑐(𝜃1 + 𝜃2) −𝑙2𝑠(𝜃1 + 𝜃2)
𝑙1𝑐𝜃1 + 𝑙2𝑐(𝜃1 + 𝜃2) 𝑙1𝑠𝜃1 + 𝑙2𝑠(𝜃1 + 𝜃2)

] ,          (B.3.15) 

 

and the iteration is set up as   

[
𝜃1
𝜃2
]
(𝑖+1)

= [
𝜃1
𝜃2
]
(𝑖)

+ 𝐽−1 ([
𝑋
𝑌
] − [

𝑋
𝑌
]
(𝑖)

) .                                  (B.3.16) 

 

Let assume the parameters 𝑙1 = 𝑙2 = 1 , and end-effector position  𝑇 = [𝑋 𝑌]𝑇 = [1 1]𝑇 , 

and from an initial guess position  
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𝑞(0) = [
𝜃1
𝜃2
]
(0)

= [
𝜋 3⁄

−𝜋 3⁄
] ,                                               (B.3.17) 

and 

𝛿𝑇 = [
1
1
] − [

𝑐(𝜋 3⁄ ) + 𝑐(𝜋 3⁄ − 𝜋 3⁄ )

𝑠(𝜋 3⁄ ) + 𝑠(𝜋 3⁄ − 𝜋 3⁄ )
] = [

1
1
] − [

3 2⁄

√3 2⁄
] = [

−1

2

−√3

2
+1
]  .     (B.3.18) 

The Jacobian and its inverse matrix are  

𝐽 = [
−√3

2
0

3

2
1
]    , 𝐽−1 = [

−2√3

3
0

√3 1
] ,                                    (B.3.19) 

and therefore, 

𝑞(1) = [
𝜃1
𝜃2
]
(1)

= [
𝜃1
𝜃2
]
(0)

+ 𝐽−1(𝛿𝑇) = [
𝜋

3

−
𝜋

3

] + [
−2√3

3
0

√3 1
] [

−1

2

−√3

2
+ 1

] = [
1.62
−1.78

] .     (B.3.10) 

 

Base on the iterative technique, the solution can be found in a few iterations as shown:  

Iteration 2  𝐽 = [
−0.844 0.154
0.934 0.988

] ’ 𝛿𝑇 = [
0.065
0.155

] , 𝑞(2) = [
1.583
−1.582

] 

Iteration 3 𝐽 = [
−1 0.000433
0.988 0.999

] ’ 𝛿𝑇 = [
0.0119

−0.000362
] , 𝑞(3) = [

1.5707958
−1.5708670

] 

Iteration 4 𝐽 = [
−1 0.0
0.998 1.0

] ’ 𝛿𝑇 = [−0.438 × 10
−6

0.711 × 10−4
] , 𝑞(4) = [

1.570796329
−1.570796329

] 

The result of  𝑞(4) is very close to the required value of  𝑞 = [
𝜋 2⁄

−𝜋 2⁄
]. 

 

B.4 Singularities  

Given a linear transformation relating a joint velocity �̇� to Cartesian velocity 𝑣, if the matrix is 

nonsingular, we can express the relationship as  

�̇� = 𝐽(𝜃)−1𝑣 .                                                        (B.4.1) 

An in-depth study of the classification of singularities is beyond the scope of this thesis, for more 

information; please refer to [L.W. Tsai, 1999]. Singularities can be broadly classified into two 

categories:  

 Workspace-boundary: this situation occurs when the manipulator is fully folded or 

extended in a manner that the end-effector is at the boundary limit of the manipulator. 

 Workspace-interior: this situation is caused by a lining up of two or more joint axes.  
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A manipulator will lost one or more DoF if it is in singular configuration [J. Craig, 2005]. This 

means that there is some position/direction which it is impossible to reach, no matter what joint 

speed are selected. 

 

B.5 Three-D Linear Inverted Pendulum Model 

B.5.1 Dynamic of a 3D Inverted Pendulum 

During single support phase (SSP), the dynamic of a bipedal can be represented by a single-mass 

inverted pendulum as depicted in Figure B.5 [S. Kajita, F. Kahehiro et al., 2003], the location of 

a  point mass 𝑝 = (𝑥, 𝑦, 𝑧) can be represented with state variables 𝑞 = (𝜃𝑟 , 𝜃𝑝 , 𝑟) according to 

the right-hand rule (i.e. 𝜃𝑟 < 0 𝑎𝑛𝑑   𝜃𝑝 > 0), and  r is the length of the pendulum leg.  

 

Figure B.5. Single Mass Inverted Pendulum Model. 

 

Let (𝜏𝑟 , 𝜏𝑝) be the actuator torque, 3D inverted pendulum dynamic motion equations can be 

derived as 

𝑚(−𝑧�̈� + 𝑦�̈�) =
𝐷

𝐶𝑟
𝜏𝑟 −𝑚𝑔𝑦 ,                                              (B. 5.1) 

𝑚(𝑧�̈� − 𝑥�̈�) =
𝐷

𝐶𝑝
𝜏𝑝 +𝑚𝑔𝑥 ,                                             (B. 5.2) 



 

 195 

where  𝐶𝑟 ≡ cos 𝜃𝑟 , 𝐶𝑝 ≡ cos 𝜃𝑝 , 𝐷 ≡ √𝐶𝑟
2 + 𝐶𝑝

2 − 1 , 𝑔 is the gravity acceleration and 𝑚 is 

the object total mass. Note that these equations are non-linear. 

 

B.5.2 3D Linear Inverted Pendulum Mode 

To linearized the model, constraint is applied to limit the motion of the single mass in the z-plane 

with vector parameters  (𝑘𝑥, 𝑘𝑦, −1) and intersect the z-axis at  point at 𝑧𝑐 with 

𝑧 = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑧𝑐 .                                                        (B. 5.3)  

The second derivative of equation (B.5.3) is 

�̈� = 𝑘𝑥�̈� + 𝑘𝑦�̈� ,                                                             (B. 5.4)  

and the force 𝑓 acting on the mass 𝑚 can be separated into  𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 Cartesian coordinates 

(B.5.5) 

Base on Newton law, the forces equations for the three planes in equation can be written as  

𝑚�̈� =
𝑥

𝑟
𝑓  , 𝑚�̈� =

𝑦

𝑟
𝑓  , 𝑚�̈� =

𝑧

𝑟
𝑓 − 𝑚𝑔𝑧 .                                      (B. 5.6) 

Substitute the constraints (B.5.5) and (B.5.6) into (B.5.4), the matrix form is obtained 

[
𝑥

𝑟
𝑓

𝑦

𝑟
𝑓

𝑧

𝑟
𝑓 − 𝑚𝑔𝑧] [

−𝑘𝑥
−𝑘𝑥
1

] = 0 .                                        (B. 5.7) 

By setting the constraints to (𝑘𝑥 = 0, 𝑘𝑦 = 0) for walking on horizontal flat surface, from 

(B.5.7), the force 𝑓 is determined 

𝑓 =
𝑚𝑔𝑧𝑟

𝑧𝑐
  .                                                                (B. 5.8) 

The natural trajectory of a 3D-LIPM can be determined by substituting (B.5.8) into (B.5.6): 

�̈� =
𝑔

𝑧𝑐
𝑥 ,                                                           (B. 5.9) 

�̈� =
𝑔

𝑧𝑐
𝑦 .                                                        (B. 5.10) 

Note that the above equations are now decoupled independent linear equations as compared to 

equations (B.5.1) and (B.5.2).   
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B.6 Moment of Inertial  

Applying Newton’s Second Law, the sum of the forces acting on a mass in linear motion equals 

the mass times the acceleration of the mass, is calculated as  

∑𝐹 = 𝑚𝑎 .                                                             (B.6.1) 

For a rotating mass, Newton’s Second Law is defined as 

∑𝑀 = 𝐼�̈� ,                                                                (B.6.2) 

where ∑𝑀 is the sum of the moments about the rotating axis, 𝐼 is the moment of inertia of the 

mass about that axis, and �̈� is the mass angular acceleration. The moment of inertia about the 

axis can be written as 

𝐼 = ∫𝑚𝑟2𝑑𝑉,                                                         (B.6.3) 

where 𝑟 is the radial distance from the axis.  

 

B.7 Zero-Moment Point (ZMP) 

The Zero-Moment Point (ZMP) may also be regarded as the Center-of-Pressure of the reacting 

forces due to the robot body mass from the ground contact surface as depicted in Figure B.7.  

 

Figure B.7. ZMP and floor reaction forces. 
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The floor reaction forces 𝑓𝑖 are formed up by a subset of points  𝑝𝑖 and can be written in vector 

form: 

𝑓𝑖 = [𝑓𝑖𝑥 𝑓𝑖𝑦 𝑓𝑖𝑧]𝑇 ,     𝑓𝑜𝑟 (𝑖 = 1,2, …𝑁) .                              (B. 7.1) 

 

Where 𝑓𝑖𝑥 , 𝑓𝑖𝑦 and 𝑓𝑖𝑧 are the forces in the x, y, z direction respectively. Therefore ZMP can be 

calculate as  

 𝑍𝑀𝑃 =
∑ 𝑝𝑖𝑓𝑖𝑧
𝑁
𝑖=1

∑ 𝑓𝑖𝑧
𝑁
𝑖=1

 .                                                     (B. 7.2) 

 

The points 𝑝𝑖 form the support convex polygon (SCP) foot-print. This can be concluded that the 

ZMP always exists in the SCP and the ZMP is undefined if the CoP is not inside the SCP.  

 

The torque around the ZMP can be calculated as 

𝜏 = ∑ (𝑁
𝑖=1 𝑝𝑖 − 𝑝) × 𝑓𝑖 .                                                   (B.7.3) 

The above equation can be reprsented in vector form for as follows: 

𝜏𝑥 = ∑ (𝑝𝑖𝑦 − 𝑝𝑦)𝑓𝑖𝑧
𝑁
𝑖=1 − ∑ (𝑝𝑖𝑧 − 𝑝𝑧)𝑓𝑖𝑦

𝑁
𝑖=1  ,                                (B.7.4) 

𝜏𝑦 = ∑ (𝑝𝑖𝑧 − 𝑝𝑧)𝑓𝑖𝑥
𝑁
𝑖=1 − ∑ (𝑝𝑖𝑥 − 𝑝𝑥)𝑓𝑖𝑧

𝑁
𝑖=1  ,                                (B.7.5) 

𝜏𝑧 = ∑ (𝑝𝑖𝑥 − 𝑝𝑥)𝑓𝑖𝑦
𝑁
𝑖=1 − ∑ (𝑝𝑖𝑦 − 𝑝𝑦)𝑓𝑖𝑥

𝑁
𝑖=1  ,                                (B.7.6) 

where 𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝑧 are the position vector and 𝑝𝑦, 𝑝𝑦, 𝑝𝑦 are the ZMP components respectively. 

For a flat horizontal surface,  𝑝𝑖𝑧 = 𝑝𝑧  for all i, the last term of (B.7.4) and the first term of 

(B.7.5) is zero, we obtained 𝜏𝑥 = 𝜏𝑦 = 0 , and only 𝜏𝑧 ≠ 0. This is the definition of zero-

moment-point. 
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B.8 Lagrangian Dynamic Model  

The Lagrangian of a mechanical system is commonly defined as [C. Chevallereau, G. Bessonnet 

et al., 2009] the difference between the kinetic (𝐾) and potential (𝑉) energies  

(B.8.1) 

𝑇(𝑞, �̇�) =
1

2
�̇�
𝑇
𝐷(𝑞)�̇� ,                                                          (B.8.2) 

𝑉(𝑞) = ∑ 𝑉𝑖(𝑞)
𝑁
𝑖=1  ,                                                          (B.8.3) 

where D is the symmetric inertia matrix.  

 

Applying the Lagrangian notation, the equation of motion can be derived  

(B.8.4) 

where 𝑓𝑖  are the joint torques and other forces acting on the i-th generalized coordinate 𝑞 ∈ 𝑄. 

The generalized coordinate represent the robot’s position, orientation and shape in 3D space.  

 

 


